Vol. 1
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-07
Diffraction Efficiency Enhancement of Guided Optical Waves by Magnetostatic Forward Volume Waves in the Yttrium-Iron-Garnet Waveguide Coated with Perfect Mental Layers
By
Progress In Electromagnetics Research B, Vol. 1, 209-218, 2008
Abstract
The diffraction efficiency (DE) of guided optical waves (GOWs) and the magneto-optic (MO) -3 dB bandwidth are key parameters in MO Bragg cells. To improve the diffraction performance, the MO Stokes interaction between magnetostatic forward volume waves (MSFVWs) and GOWs are studied by use of the coupledmode theory in metal clad yttrium-iron-garnet (YIG) waveguides. Our analysis shows that, by adjusting the spacing of the metal layer from the ferrite surface, (1) the DE can be further increased by 7.32 dB compared with that of the inclined magnetization, but the MO bandwidth will be dropped down to the low level in the optimizing waveguide configuration; (2) when the DE and the MO bandwidth should be considered synthetically, a DE improvement of 3.9 dB with a bandwidth about 560 MHz is achieved corresponding to the large gainbandwidth product. Thus, the YIG waveguide coated with perfect metal layers can be used to improve the performance of MO Bragg cells.
Citation
Feng Wen, and Bao-Jian Wu, "Diffraction Efficiency Enhancement of Guided Optical Waves by Magnetostatic Forward Volume Waves in the Yttrium-Iron-Garnet Waveguide Coated with Perfect Mental Layers," Progress In Electromagnetics Research B, Vol. 1, 209-218, 2008.
doi:10.2528/PIERB07103003
References

1. Daniel, M. R., J. D. Adam, and T. W. O'Keeffe, "Linearly dispersive delay lines at microwave frequencies using magnetostatic waves," IEEE Ultrasonics Symposium Proc., 806-809, 1979.

2. Adam, J. D., T. W. O'Keefe, and M. R. Daniel, "Magnetostatic wave devices for microwave signal processing," SPIE Real-Time Signal Proc., Vol. 241, 96-103, 1980.

3. Sethares, J. C., J. M. Owens, and C. V. Smith, "M.S.W. non-dispersive electronically tunable time delay elements," Electron. Lett., Vol. 16, 825-826, 1980.
doi:10.1049/el:19800586

4. Ganguly, A. K. and D. C. Webb, "Microstrip excitation of magnetostatic surface waves: theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 23, 998-1006, 1975.
doi:10.1109/TMTT.1975.1128733

5. Emtage, P. R., "Interaction of magnetostatic waves with a current," J. Appl. Phys., Vol. 49, 4475-4484, 1978.
doi:10.1063/1.325452

6. Wu, B.-J., "Analysis of mode characteristics of microwave magnetostatic waves," Journal of Microwares, Vol. 22, 5-7, 2006.

7. Wu, B.-J. and K. Qiu, "An effective method for improving diffraction performance of magnetostatic backward volume wave based magneto-optic Bragg cells by using an appropriately titled bias magnetic field in YIG film plane," J. Magn. Magn. Mater., Vol. 303, 227-231, 2006.
doi:10.1016/j.jmmm.2005.11.013

8. Ma, C. and J. Cao, "TM mode optical characteristics of five-layer MOS optical waveguides," Opt. Quant. Eletron., Vol. 26, 877-884, 1994.
doi:10.1007/BF00435092

9. She, S. X., "Accurate perturbation analysis of metal-clad and absorptive multilayer dielectric waveguides in near cutoff," Opt. Commun., Vol. 135, 241-246, 1997.
doi:10.1016/S0030-4018(96)00654-2

10. Kumar, D., V. K. Sharma, and K. N. Tripathi, "Frequency response of metal clad planar optical waveguides," Optics Laser Technol., Vol. 39, 68-71, 2007.
doi:10.1016/j.optlastec.2005.05.009

11. Young, D. and C. S. Tsai, "GHz bandwidth magneto-optic interaction in yttrium iron garnet-gadolinium gallium garnet waveguide using magnetostatic forward volume waves," Appl. Phys. Lett., Vol. 53, 1696-1698, 1988.
doi:10.1063/1.99800

12. Wu, B.-J. and K. Qiu, "Magneto-optic coupling theory for guided optical waves and magnetostatic waves using an arbitrarily titled bias magnetic field," Chin. Phys. Lett., Vol. 22, 2396-2399, 2005.
doi:10.1088/0256-307X/22/9/071