Vol. 2
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-30
Design of Cartesian Feedback RF Power Amplifier for L-Band Frequency Range
By
Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008
Abstract
A phase-alignment system is used fully integrate a power amplifier, Cartesian feedback linearization circuitry, and a phasealignment system. The phase-alignment system employs a new technique for offset-free analog multiplication that enables it to function without manual trimming. This paper demonstrates how the phase-alignment system improves the stability margins of the fully integrated Cartesian feedback system. The power amplifier itself, integrated on the same die, operates at 1 GHz and delivers a maximum of 30 dBm of output power into a 50-load. The class AB design for open loop and close loop power amplifier with Cartesian feedback, demonstrated a good linearity of 50 dBc and 80 dBc, respectively. The operating power is 2 W at 1000 MHz frequency.
Citation
Mandeep Singh, Anand Lokesh, Syed Idris Syed Hassan, mohd Mahmud, and Mohd Fadzil Ain, "Design of Cartesian Feedback RF Power Amplifier for L-Band Frequency Range," Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008.
doi:10.2528/PIERB07111901
References

1. Albert, B. R., Introduction to Satellite Communications, 3rd Ed., Artech House Inc., Norwood, MA, 2002.

2. Coskun, A. H. and S. Demir, "A mathematical characterization and analysis of a feedforward circuit for CDMA applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 767-777, 2003.
doi:10.1109/TMTT.2003.808582

3. Park, J. K., D. H. Shin, J. N. Lee, and H. J. Eom, "A full-wave analysis of a coaxial waveguide slot bridge using the fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 143-158, 2006.
doi:10.1163/156939306775777198

4. Wu, C. and G.-X. Jiang, "Stabilization procedure for the time-domain integral equation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1507-1512, 2007.

5. Dawson, J. and T. Lee, "Automatic phase alignment for high bandwidth Cartesian feedback power amplifiers," IEEE Proceeding Radio and Wireless Conf., 71-74, 2000.

6. Makki, S. V., T. Z. Ershadi, and M. S. Abrishamian, "Determining the specific ground conductivity aided by the horizontal electric dipole antenna near the ground surface," Progress In Electromagnetics Research B, Vol. 1, 43-65, 2008.
doi:10.2528/PIERB07093003

7. Mallahzadeh, A. R., A. A. Dastranj, and H. R. Hassani, "A novel dual-polarized double-ridged horn antenna for wideband applications," Progress In Electromagnetics Research B, Vol. 1, 67-80, 2008.
doi:10.2528/PIERB07101602

8. Mohammadi, F. A. and M. C. E. Yagoub, "Electromagnetic model for microwave components of integrated circuits," Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008.
doi:10.2528/PIERB07101802

9. Dawson, J. L. and T. H. Lee, "Automatic phase alignment for a fully integrated Cartesian feedback power amplifier system," IEEE Journal of Solid-State Circuits, Vol. 38, 2269-2279, 2003.
doi:10.1109/JSSC.2003.819090

10. Faulkner, M., D. Contos, and M. Briffa, "Performance of automatic phase adjustment using supply current minimization in a RF feedback lineariser," Proc. 8th IEEE Int. Symp. Personal, Indoor, and Mobile Radio Communications, 858-862, 1997.

11. Khan, S. N., J. Hu, J. Xiong, and S. He, "Circular fractal monopole antenna for low VSWR UWB applications," Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008.
doi:10.2528/PIERL07110903

12. Han, G. and E. Sanchez-Sinencio, "CMOS transconductance multipliers: A tutorial," IEEE Trans. Circuits Syst. II, Vol. 45, 1550-1563, 1998.

13. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Online, Vol. 3, No. 8, 1321-1325, 2007.
doi:10.2529/PIERS070416143017

14. Ma, H. and Q. Feng, "An improved design of feed-forward power amplifier," PIERS Online, Vol. 3, No. 4, 363-367, 2007.
doi:10.2529/PIERS060817033556

15. Huang, Q. and C. Menolfi, "A 200 nV offset 6:5 nV=pHz noise PSD 5.6 kHz chopper instrumentation amplifier in 1 μm digital CMOS," IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 362-363, 2001.

16. Sebak, S., L. Zhu, V. K. Devabhaktuni, and C. Wang, "A CRLH microstrip delay line for high-speed electronic circuits," PIERS Online, Vol. 3, No. 3, 259-263, 2007.
doi:10.2529/PIERS061007235152

17. Zhao, J., J. Zhou, N. Xie, J. Zhai, and L. Zhang, "Error analysis and compensation algorithm for digital predistortion systems," PIERS Online, Vol. 2, No. 6, 702-705, 2006.
doi:10.2529/PIERS060901232412

18. Huh, J. W., I. S. Chang, and C. D. Kim, "Spectrum monitored adaptive feedforward linearization," Microwave Journal, Vol. 44, 160-166, 2001.

19. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Proceedings in Prague, Prague, Czech Republic, August 27-30 2007.

20. Presa, J., J. Legarda, H. Solar, J. Melendev, A. Munoz, and A. G. Alonso, "An adaptive feedforward amplifier for UMTS downlink transmitters," 15th IEEE Int. Personal, Indoor and Mobile Radio Communications System, 2005.

21. Liao, S.-S., S.-Y. Yuan, H.-N. Lin, P.-T. Sun, and K.-C. Chuang, "Parallel-coupled microstrip filter using stepped-impedance and over-coupled end stages for suppression of spurious responses," PIERS 2007 in Beijing Proceedings, Beijing, China, March 26-30 2007.

22. Youngoo, Y., C. Jeonghyeon, S. Bumjee, and K. Bumman, "A microwave doherty amplifier employing envelope tracking technique for high efficiency and linearity," IEEE Microwave and Wireless Components Letters, Vol. 13, 2003.