Vol. 3
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-12-11
Electromagnetic Scattering from Two Eccentric Metamaterial Cylinders with Frequency-Dependent Permittivities Differing Slightly Each Other
By
Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008
Abstract
The interaction between a metamaterial cylindrical structure and an incident plane wave is investigated. The structure is comprised of two cylinders, one embedded into the other, whose effective characteristics vary with the operating frequency following similar laws. Such a model can be used to describe periodic structures, constituting metamaterials, with slightly different features. The well-known eigenfunction expansions are adopted, while the boundary conditions are manipulated with help of the translation theorem for cylindrical coordinates. A first-order perturbation solution is obtained leading to simple and computationally efficient formulas. The fluctuations of near-field and far-field responses with respect to the position of the internal cylinder, the permittivities and the frequency are observed and discussed.
Citation
Constantinos Valagiannopoulos, "Electromagnetic Scattering from Two Eccentric Metamaterial Cylinders with Frequency-Dependent Permittivities Differing Slightly Each Other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906
References

1. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297-325, 2007.
doi:10.2528/PIER07041203

2. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337

3. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1-21, 2008.
doi:10.2528/PIER07092206

4. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

5. Qiu, C.-W., H.-Y. Yao, S.-N. Burokur, S. Zouhdi, and L.-W. Li, "Electromagnetic scattering properties in a multilayered metamaterial cylinder," IEICE Trans. Commun., Vol. E90–B, No. 9, 2423-2430, 2007.
doi:10.1093/ietcom/e90-b.9.2423

6. Shooshtari, A. and A. R. Sebak, "Electromagnetic scattering by parallel metamaterial cylinders," Progress In Electromagnetics Research, Vol. 57, 165-177, 2006.
doi:10.2528/PIER05071103

7. Kuzmiak, V. and A. A. Maradudin, "Scattering properties of a cylinder fabricated from a left-handed material," Physical Review B, Vol. 66, No. 045116, 2002.

8. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E, Vol. 68, No. 065602(R), 2003.

9. Roumeliotis, J. A., J. G. Fikioris, and G. P. Gounaris, "Electromagnetic scattering from an eccentrically coated infinite metallic cylinder," J. Appl. Phys., Vol. 51, No. 8, 4488-4453, 1980.
doi:10.1063/1.328271

10. Mushref, M. A., "Closed solution to electromagnetic scattering of a plane wave by an eccentric cylinder coated with metamaterials," Optics Communications, Vol. 270, 441-446, 2007.
doi:10.1016/j.optcom.2006.09.064

11. Uzunoglu, N. K. and J. G. Fikioris, "Scattering from an infinite dielectric cylinder embedded into another," J. Phys. A: Math. Gen., Vol. 12, No. 6, 825-834, 1979.
doi:10.1088/0305-4470/12/6/011

12. Siddiqui, O. F. and G. V. Eleftheriades, "Resonant modes in continuous metallic grids over ground and related spatial-filtering application," Journal of Applied Optics, Vol. 99, No. 083102, 2006.

13. Grigorenko, A. N., "Negative refractive index in artificial metamaterials," Opt. Lett., Vol. 31, No. 2483, 2006.

14. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

15. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, 365, National Bureau of Standards, Washington, 1970.

16. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Micro. Theory and Techniques, Vol. 50, No. 12, 2002.