Vol. 17
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-09-13
The Compressed-Sampling Filter (Csf)
By
Progress In Electromagnetics Research B, Vol. 17, 255-273, 2009
Abstract
The common approaches to sample a signal generally follow the well-known Nyquist-Shannon's theorem: the sampling rate must be at least twice the maximum frequency presented in the signal. A new emerging field, compressed sampling (CS), has made a paradigmatic step to sample a signal with much less measurements than those required by the Nyquist-Shannon's theorem when the unknown signal is sparse or compressible in some frame. We call a compressed-sampling filter (CSF) one for which the function relating the input signal to the output signal is pseudo-random. Motivated by the theory of random convolution proposed by Romberg (for convenience, called the Romberg's theory) and the fact that the signal in complex electromagnetic environment may be spread out due to the rich multi-scattering effect, two CSFs via microwave circuit to enable signal acquisition with sub-Nyquist sampling have been constructed, tested and analyzed. Afterwards, the CSF based on surface acoustic wave (SAW) structure has also been proposed and examined by the numerical simulation. The results has empirically shown that by the proposed architectures the S-sparse n-dimensional signal can be exactly reconstructed with O(Slogn) real-valued measurements or O(Slog(n/S)) complex-valued measurements with overwhelming probability.
Citation
Lianlin Li, Wenji Zhang, Yin Xiang, and Fang Li, "The Compressed-Sampling Filter (Csf)," Progress In Electromagnetics Research B, Vol. 17, 255-273, 2009.
doi:10.2528/PIERB09081006
References

1. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information ," IEEE Trans. Inform. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

2. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems, Vol. 23, 969-986, 2007.
doi:10.1088/0266-5611/23/3/008

3. Candes, E. and T. Tao, "Near-optimal signal recovery from random projections and universal encoding strategies," IEEE Trans. Inform. Theory, Vol. 52, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

4. Donoho, D. and Compressed sensing, "IEEE Trans. Inform. Theory ,", Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

5. Laska, J. N., S. Kirolos, M. F. Duarte, T. Ragheb, R. G. Baraniuk, and Y. Massoud, "Theory and implementation of an analogy-to-information conversion using random demodulation," Proc. IEEE Int. Symposium on Circuits and Systems, New Orleans, LA, May 2007.

6. Gehm, M. E., R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, "Single-shot compressive spectral imaging with a dual-disperser architecture," Optics Express, Vol. 15, No. 21, 14013-14027, 2007.
doi:10.1364/OE.15.014013

7. Fergus, R., A. Torralba, and W. T. Freeman, "Random lens imaging," MIT-CSAIL-TR-2006-058, 2006.

8. Vetterli, M., P. Marziliano, and T. Blu, "Sampling signals with finite rate of innovation," IEEE Trans. on Signal Processing, Vol. 50, No. 6-1417, 2002.
doi:10.1109/TSP.2002.1003065

9. Bajwa, W. U., J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, "Toeplitz-structured compressed sensing matrices," IEEE/SP 14th Workshop on Statistical Signal Processing, 294-298, Madison, WI, Aug. 2007.

10. Tropp, J. A., M. B. Wakin, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Random filters for compressive sampling and reconstruction," Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc., Toulouse, France, May 2006.

11. Romberg, J., "Compressive sensing by random convolution,", Submitted to SIAM J. Imaging Science, 2008.

12. Jacques, L., P. Vandergheynst, A. Bibet, V. Majidzadeh, A. Schmid, and Y. Leblebici, "CMOS compressed imaging by random convolution,", Available on http://www.dsp.ece.rice.edu/cs.

13. Park, J. I., C. S. Kim, J. Kim, et al. "Modeling of a photonic bandgap and its application for the low-pass filter design," Asia-Pacific Microwave Conference, 331-334, Singapor, 1999.

14. Hong, J. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, A Wiley-Interscience publication, Wiley & Sons, Inc., 2001.

15. Brocato, R. W., E. Heller, J. Wendt, J. Blaich, G. Wouters, E. Gurule, G. Omdahl, and D. W. Palmer, "UWB communication using SAW correlations," Proc. IEEE Radio Wireless Conf. Atlanta, 267-270, Sep. 21-23, 2004.

16. Brocato, R. W., J. Skinner, G. Wouters, J. Wendt, E. Heller, and J. Blaich, "Ultra-wideband SAW correlator," IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 53, No. 9, 1554-1556, 2006.
doi:10.1109/TUFFC.2006.1678180

17. Paredes, J., G. R. Arce, and Z. Wang, "Ultra-wideband compressed sensing: Channel estimation," IEEE J. Select. Topics Signal Proc., Vol. 1, 383-395, Oct. 2007.

18. Marcia, R. F., T. H. Zachary, and R. M. Willett, "Compressive coded aperture imaging," SPIE-IS&T Electronic Imaging, Vol. 7246, 72460G-2, 2009.

19. Rivenson, Y. and A. Stern, "Compressed imaging with separable sensing operator," IEEE Signal Processing Letters, Vol. 16, No. 6, 449-452, 2009.
doi:10.1109/LSP.2009.2017817