Vol. 18
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-10-14
A General FDTD Algorithm Handling Thin Dispersive Layer
By
Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009
Abstract
A novel general technique for treating electrically thin dispersive layer with the finite difference time domain (FDTD) method is introduced. The proposed model is based on the modifying of the node update equations to account for the layer, where the electric and magnetic flux densities are locally averaged in the FDTD grid. Then, based on the characteristics that the complex permittivity and permeability of three kinds of general dispersive media models, i.e., Debye model, Lorentz model, Drude model, the permittivity and permeability can be formulated by rational polynomial fraction in , the conversion equation from frequency domain to time domain (i.e., replaced by ∂/∂t) and the shift operator method are then applied to obtain the constitutive relation at modified electrical points and the time-domain recursive formula for D and E, B and H available for FDTD computation are obtained. Several numerical examples are presented, indicating that this scheme possesses advantages such as fine generalization, EMS memory and time step saving and good precision.
Citation
Bing Wei, Shi-Quan Zhang, Yu-hang Dong, and Fei Wang, "A General FDTD Algorithm Handling Thin Dispersive Layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306
References

1. Yang, L. X., D. B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

2. Wang, M. Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

3. Karkkainen, M. K., "FDTD model of electrically thick frequency-dispersive coatings on metals and semiconductors based on surface impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 53, 1174-1186, 2005.
doi:10.1109/TAP.2004.842655

4. Karkkainen, M. K., "FDTD surface impedance model for coated conductors," IEEE Trans. EMC, Vol. 46, 222-233, 2004.

5. Karkkainen, M. K., "Subcell FDTD modeling of electrically thin dispersive layers," IEEE Transactions on MTT, Vol. 51, 1774-1780, 2003.
doi:10.1109/TMTT.2003.812584

6. Antonini, G. and A. Orlandi, "Time domain modeling of lossy and dispersive thin layers," IEEE Microwave and Wireless Components Letters, Vol. 17, 631-633, 2007.
doi:10.1109/LMWC.2007.903432

7. Wei, B., D.-B. Ge, and F. Wang, "A general method for FDTD modeling of wave propagation in frequency-dispersive media," Acta Phys. Sin., Vol. 57, 6290-6297, 2008 (in Chinese).

8. Maloney, J. G. and G. S. Smith, "The efficient modeling of thin material sheets in the finite-difference time-domain method," IEEE Trans. Antennas Propagat., Vol. 40, 323-330, 1992.
doi:10.1109/8.135475

9. Maloney, J. G. and G. S. Smith, "A comparison of methods for modeling electrically thin dielectric and conducting sheets in the finite-difference time-domain (FDTD) method," IEEE Trans. Antennas Propagat., Vol. 41, 690-694, 1993.
doi:10.1109/8.222291

10. Tirkas, P. A., "Modeling of thin dielectric structures using the finite-difference time-domain technique," IEEE Trans. Antennas Propagat., Vol. 39, 1338-1344, 1991.
doi:10.1109/8.99042

11. Taflove, A., Advances in Computational Electromagnetics: The FDTD Method, 2nd Ed., Artech House, Norwood, MA, 2005.
doi:10.2528/PIER07101902

12. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER09011702

13. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702

14. Akerson, J. J., M. A. Tassoudji, Y. E. Yang, and J. A. Kong, "Finite difference time domain (FDTD) impedance boundary condition for thin finite conducting sheets," Progress In Electromagnetics Research,, Vol. 31, 1-30, 2001.
doi:10.2528/PIER00070101

15. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

16. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from anisotropically coated bodies using conformal FDTD," Progress In Electromagnetics Research, Vol. 35, 287-297, 2002.
doi:10.2528/PIER02030804