Vol. 21
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-20
Synthesis of Difference Patterns for Monopulse Antennas with Optimal Combination of Array-Size and Number of Subarrays --- a Multi-Objective Optimization Approach
By
Progress In Electromagnetics Research B, Vol. 21, 257-280, 2010
Abstract
Monopulse antennas form an important methodology of realizing tracking radar. They are based on the simultaneous comparison of sum and difference signals to compute the angle-error and to steer the antenna patterns in the direction of the target (i.e., the boresight direction). In this study, we consider the synthesis problem of difference patterns of monopulse antennas in the framework of Multi-objective Optimization (MO). The synthesis problem is recast as an MO problem (for the first time, to the best of our knowledge), where the Maximum Side-Lobe Level (MSLL) and Beam Width (BW) of principal lobe are taken as the two objectives to be minimized simultaneously. The approximated Pareto Fronts (PFs) are obtained for different number of elements and sub-arrays using a recently developed and very competitive Multi-Objective Evolutionary Algorithm (MOEA) called MOEA/D-DE that uses a decomposition approach for converting the problem of approximation of the PF into a number of single objective optimization problems. This algorithm employs Differential Evolution (DE), one of the most powerful real parameter optimizers in current use, as the search method. The quality of solutions obtained is compared with the help of the trade-off graphs (plots of the approximated PF) generated by MOEA/D-DE on the basis of the two objectives to investigate the dependence of the number of array-elements and the number of sub-arrays on the final solution. Then we find the best compromise solutions for 20 element arrays and compare the results with standard single-objective algorithms such as the Differential Evolution (DE) and Particle Swarm Optimization (PSO) and hybrid techniques like Hybrid Contiguous Partition Method (HCPM) that has been reported in literature so far for the synthesis problem. Our experimental results indicate the MOEA/D-DE yields much better final results as compared to the standard single-objective and hybrid approaches over all the test cases covered here.
Citation
Siddharth Pal, Swagatam Das, Aniruddha Basak, and P. N. Suganthan, "Synthesis of Difference Patterns for Monopulse Antennas with Optimal Combination of Array-Size and Number of Subarrays --- a Multi-Objective Optimization Approach," Progress In Electromagnetics Research B, Vol. 21, 257-280, 2010.
doi:10.2528/PIERB10033107
References

1. Skolnik, I. M., Radar Handbook, McGraw-Hill, 1990.

2. Sherman, S. M., Monopulse Principles and Techniques, Artech House, 1984.

3. Bayliss, E. T., "Design of monopulse antenna difference patterns with low sidelobes," Bell Syst. Tech. J., Vol. 47, 623-650, 1968.

4. McNamara, D. A., "Synthesis of sum and difference patterns for two section monopulse arrays," Proc. Inst. Elect. Eng..

5. Elliott, R. S., "Antenna Theory and Design," Prentice Hall, Englewood Cli®s, NJ, 1981.

6. Lopez, P., J. A. Rodrguez, F. Ares, E. Moreno, "Subarray weighting for the difference patterns of monopulse antennas: Joint optimization of subarray configurations and weights," IEEE Trans. Antennas Propag., Vol. 49, No. 11, 1606-1608, Nov. 2001.
doi:10.1109/8.964098

7. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Optimization of the difference patterns for monopulse antennas by a hybrid real/integer coded differential evolution method ," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 372-376, Jan. 2005.
doi:10.1109/TAP.2004.838788

8. Massa, A., M. Pastorino, and A. Randazzo, "Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution method ," IEEE Antennas Wireless Propag. Lett., Vol. 5, 155-158, 2006.
doi:10.1109/LAWP.2006.872435

9. D'Urso, M., T. Isernia, and E. F. Meliado, "An effective hybrid approach for the optimal synthesis of monopulse antennas," IEEE Trans. Antennas Propag., Vol. 55, 1059-1066, Apr. 2007.
doi:10.1109/TAP.2007.893374

10. Manica, L., P. Rocca, A. Martini, and A. Massa, "An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations," IEEE Trans. Antennas Propag., Vol. 56, 58-66.
doi:10.1109/TAP.2007.913037

11. Rocca, P., L. Manica, and A. Massa, "Synthesis of monopulse antennas through iterative contiguous partition method," Electron. Lett., Vol. 43, No. 16, 854-856, Aug. 2007.
doi:10.1049/el:20071336

12. Rocca, P., L. Manica, R. Azaro, and A. Massa, "A hybrid approach to the synthesis of subarrayed monopulse linear arrays," IEEE Trans. Antennas Propag., Vol. 57, 280-283, Jan. 2009.
doi:10.1109/TAP.2008.2009776

13. Rocca, P. and L. Manica A. Massa, "Hybrid approach for subarrayed monopulse antenna synthesis," Electron. Lett., Vol. 44, No. 2, Jan. 2008.
doi:10.1049/el:20083167

14. Rocca, P., L. Manica, and A. Massa, "An improved excitation matching method based on an ant colony optimization for suboptimal-free clustering in sum-difference compromise synthesis ," IEEE Trans. Antennas Propag., Vol. 57, 2297-2306, Aug. 2009.
doi:10.1109/TAP.2009.2024489

15. Rocca, P., L. Manica, and A. Massa, "An effective excitation matching method for the synthesis of optimal compromises between sum and difference patterns in planar arrays," Progress In Electromagnetic Research B, Vol. 3, 115-130, 2008.
doi:10.2528/PIERB07120403

16. Rocca, P., L. Manica, and A. Massa, "Directivity optimization in planar sub-arrayed monopulse antenna," Progress In Electromagnetics Research Letters, Vol. 4, 1-7, 2008.
doi:10.2528/PIERL08042601

17. Manica, L., P. Rocca, and A. Massa, "Design of sub-arrayed linear array antennas with SLL control based on an excitation matching approach ," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1684-1691, Jun. 2009.
doi:10.1109/TAP.2009.2019914

18. Manica, L., P. Rocca, and A. Massa, "A fast graph-searching algorithm enabling the efficient synthesis of sub-arrayed planar monopulse antennas," IEEE Trans. Antennas Propagat., Vol. 57, No. 3, 652-664, Mar. 2009.
doi:10.1109/TAP.2009.2013423

19. Manica, L., P. Rocca, and A. Massa, "An excitation matching procedure for sub-arrayed monopulse arrays with maximum directivity ," IET Radar, Sonar, and Navigation, Vol. 3, No. 1, 42-48, Feb. 2009.
doi:10.1049/iet-rsn:20070176

20. Manica, L., P. Rocca, M. Pastorino, and A. Massa, "Boresight slope optimization of sub-arrayed linear arrays through the contiguous partition method ," IEEE Antenna and Propagation Letters, Vol. 8, 253-257, 2008.

21. Rocca, P., L. Manica, A. Martini, and A. Massa, "Compromise sum-difference optimization through the iterative contiguous partition method ," IET Microwaves, Antennas, and Propagation, Vol. 3, No. 2, 348-361, 2009.
doi:10.1049/iet-map:20070119

22. Massa, A., M. Pastorino, and A. Randazzo, "Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution method," IEEE Antennas Wireless Propag. Lett., Vol. 5, 155-158, 2006.
doi:10.1109/LAWP.2006.872435

23. Deb, K., Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001.

24. Li, H. and Q. Zhang, "Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II," IEEE Trans. on Evolutionary Computation, Vol. 12, No. 2, 284-302, 2009.
doi:10.1109/TEVC.2008.925798

25. Zhang, Q., W. Liu, and H. Li, "The performance of a new MOEA/D on CEC09 MOP test instances," Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, (Trondheim, Norway, May 18-21, 2009). 203-208, IEEE Press, Piscataway, NJ, 2009.

26. Zhang, Q., A. Zhou, S. Z. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari, "Multiobjective optimization test instances for the CEC 2009 special session and competition,", Technical Report CES-887, University of Essex and Nanyang Technological University, 2008.

27. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, No. 4, 341-359, 1997.

28. Price, K., R. Storn, and J. Lampinen, "Differential Evolution --- A Practical Approach to Global Optimization," Springer, Berlin, 2005.

29. Abido, M. A., "A novel multiobjective evolutionary algorithm for environmental/economic power dispatch," Electric Power Systems Research, Vol. 65, 71-81, Elsevier, 2003.

30. Kennedy, J., R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, CA, 2001.

31. Dolph, C. L., "A current distribution for broadside arrays," Proc. IRE, Vol. 34, 335-348, Jun. 1946.

32. Abramovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1965.

33. Abraham, A., L. C. Jain, and R. Goldberg, "Evolutionary Multiobjective Optimization: Theoretical Advances and Applications," Springer Verlag, London, 2005.

34. Coello Coello, C. A., G. B. Lamont, and D. A. van Veldhuizen, "Evolutionary Algorithms for Solving Multi-objective Problems," Springer, 2007.

35. Zhang, Q. and H. Li, "MOEA/D: A multi-objective evolutionary algorithm based on decomposition," IEEE Trans. on Evolutionary Computation, Vol. 11, No. 6, 712-731, 2007.

36. Miettinen, K., "Nonlinear Multiobjective Optimization," Kuluwer Academic Publishers, 1999.