Vol. 22
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-06-03
A Comparative Study of High Birefringence and Low Confinement Loss Photonic Crystal Fiber Employing Elliptical Air Holes in Fiber Cladding with Tetragonal Lattice
By
Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010
Abstract
We numerically compare the mode birefringence and confinement loss with four patterns of index-guiding photonic crystal fibers (PCF) using the finite element method. These PCFs are composed of a solid silica core surrounded by different sizes of elliptical air holes and a cladding which consist of the same elliptical air holes in fiber cladding with tetragonal lattice. The maximal modal birefringence and lowest confinement loss of our proposed case A structure at the excitation wavelength of λ=1550 nm can be achieved at a magnitude of 5.3×10-2 (which is the highest value to our knowledge) and less than 0.051 dB/km (an acceptable value less than 0.1 dB/km) with only four rings of air holes in fiber cladding, respectively. The merit of our designed PCFs is that the birefringence and confinement loss can be easily controlled by turning the pitch (hole to hole spacing) of elliptical air holes in PCF cladding.
Citation
Yuan-Fong Chau, Chi-Yu Liu, Han-Hsuan Yeh, and Din Ping Tsai, "A Comparative Study of High Birefringence and Low Confinement Loss Photonic Crystal Fiber Employing Elliptical Air Holes in Fiber Cladding with Tetragonal Lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405
References

1. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202

2. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

3. Guenneau, S., A., Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

4. Yue, Y., G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett., Vol. 32, 469-471, 2007.
doi:10.1364/OL.32.000469

5. Steel, M. J. and R. M. Osgood Jr., "Elliptical hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229

6. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040

7. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell of elliptical-hole with squeezed triangular lattice," Jpn. J. Appl. Phys., Vol. 46, 1048-1051, 2007.
doi:10.1143/JJAP.46.L1048

8. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons, Inc., New York, 2002.

9. Bach, H. and N. Neuroth, The Properties of Optical Glass, Springer, Heidelberg, 1995.

10. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325

11. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701

12. Liu, Y. C and Y. Lai, "Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: Numerical analysis," Opt. Express, Vol. 13, 225-235, 2005.
doi:10.1364/OPEX.13.000225

13. Kim, B. Y., J. N. Blake, S. Y. Huang, and H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices," Opt. Lett., Vol. 12, 729-731, 1987.
doi:10.1364/OL.12.000729

14. Blake, J. N., S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett., Vol. 12, 732-734, 1987.
doi:10.1364/OL.12.000732

15. Falkenstein, P., C. D. Merritt, and B. L. Justus, "Fused performs for the fabrication of photonic crystal fibers," Opt. Lett., Vol. 29, 1858-1860, 2004.
doi:10.1364/OL.29.001858

16. Issa, N. A., M. A. V. Eijkelenborg, and M. Fellew, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett., Vol. 29, 1336-1338, 2004.
doi:10.1364/OL.29.001336

17. Domachuk, P., A. Chapman, E. Mägi, M. J. Steel, H. C. Nguyen, and B. J. Eggleton, "Transverse characterization of high air-fill fraction tapered photonic crystal fiber," Appl. Opt., Vol. 44, 3885-3892, 2005.
doi:10.1364/AO.44.003885