Vol. 24
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-26
Weighted Centroid Method for Breast Tumor Localization Using an UWB Radar
By
Progress In Electromagnetics Research B, Vol. 24, 1-15, 2010
Abstract
This paper studies the potential of ultra-wideband (UWB) microwave imaging for detection and localization of breast cancer in its early stages. A method is proposed for locating tumors which is based on the time-of-flight of the signal backscattered at the tumor. Time-of-flight is detected using a wavelet transform algorithm. The main contribution of this paper is that it proposes to determine the position of the tumor by using an adapted version of the centroid localization method used in wireless sensor nodes. Its main advantage is that it does not require knowing a priori neither the propagation velocity of the breast nor its dielectric permittivity. The feasibility of the method has been investigated by means of simulated and experimental results with an ultra-wideband radar and a phantom.
Citation
Antonio Lazaro, David Girbau, and Ramon Villarino, "Weighted Centroid Method for Breast Tumor Localization Using an UWB Radar," Progress In Electromagnetics Research B, Vol. 24, 1-15, 2010.
doi:10.2528/PIERB10063004
References

1. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

2. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330

3. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.
doi:10.1155/2008/761402

4. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispeherical antenna array design for breast imaging," Proceedings European Conference on Antennas and Propagation, 1-5, 2007.

5. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimenal investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

6. Bolomey, J. C., A. Izadnegahdar, L. Jofre, C. Pichot, G. Peronnet, and M. Solaimani, "Microwave diffraction tomography for biomedical applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 11, 1998-2000, 1982.
doi:10.1109/TMTT.1982.1131357

7. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

8. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, A. G. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, A. Starostin, B. Voinov, M. Taran, G. Tatsis, and V. Baranov, "Three-dimensional microwave tomography: Initial experimental imaging of animals," IEEE Trans. Biomed. Eng., Vol. 49, No. 1, 55-63, January, 2002.
doi:10.1109/10.972840

9. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal approach for microwave breast cancer detection --- Localization in three dimensions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1921-1927, June, 2006.
doi:10.1109/TMTT.2006.871994

10. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

11. Fontana, R. J., "Recent system applications of short-pulse ultra-wideband (UWB) technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2087-2104, September, 2004.
doi:10.1109/TMTT.2004.834186

12. Chen, Y., E. Gunawan, K. S. Low, S. C. Wang, Y. Kim, and C. B. Soh, "Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis," IEEE Trans. Antennas Propag., Vol. 55, 194-204, 2007.
doi:10.1109/TAP.2006.888432

13. Yang, F. and A. S. Mohan, "Ultra wideband microwave imaging and localization for breast cancer," IEEE Microwave Conference APMC, 1-4, Asia-Pacific, 2008.

14. Sahinoglu, Z., S. Gezici, and I. Guvenc, Ultra-wideband Positioning Systems, Cambridge University Press, 2008.

15. Knapp, C. and G. Carter, "The generalized correlation method for estimation of time delay," IEEE Trans. Acoust., Speech, and Sig. Processing (ICASSP), Vol. 24, 320-327, 1976.
doi:10.1109/TASSP.1976.1162830

16. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

17. Lazenik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 10, 6093-6115, October, 2007.

18. Goswami, J. C. and A. K. Chan, Fundamentals of Wavelets, Theory, Algorithms, and Applications, John Wiley & Sons, Inc., 1999.

19. Li, H. J. and K. M. Li, "Application of wavelet transform in target identification," Progress In Electromagnetics Research, Vol. 12, 57-73, 1996.

20. Pourvoyeur, K., A. Stelzer, G. Ossberge, T. Buchegger, and M. Pichle, "Wavelet-based impulse reconstruction in UWB-radar," IEEE MTT-S Digest, 603-606, 2003.

21. Aly, O. A. M. and A. S. Omar, "Detection and localization of RF radar pulses in noise environments using wavelet packet transform and higher order statistics," Progress In Electromagnetics Research, Vol. 58, 301-317, 2006.

22. Bulusu, N., J. Heidemann, and D. Estrin., "GPS-less low cost outdoor localization for very small devices," IEEE Personal Communications, Vol. 7, No. 5, 28-34, 2000.
doi:10.1109/98.878533

23. Reichenbach, F. and D. Timmermann, "Indoor localization with low complexity in wireless sensor networks," IEEE Int. Conf. on Industrial Infromatics, 1018-1023, 2006.
doi:10.1109/INDIN.2006.275737

24. Winters, D. W., J. D. Shea, E. L. Madsen, G. R. Frank, B. D. Van Veen, and S. C. Hagness, "Estimating the breast surface using UWB microwave monostatic backscatter measurements," IEEE Trans. On Biomedical Eng., Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028

25. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

26. Li, X., S. K. Davis, S. C. Hagness, D. W. Van Der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multi-layer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, August, 2004.
doi:10.1109/TMTT.2004.832686

27. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103