Vol. 28
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-01-17
Hybrid of Particle Swarm Optimization, Simulated Annealing and Tabu Search for the Reconstruction of Two-Dimensional Targets from Laboratory-Controlled Data
By
Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011
Abstract
Recently, the use of the particle swarm optimization (PSO) technique for the reconstruction of microwave images has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, the basic PSO algorithm is easily trapping into local minimum and may lead to the premature convergence. When a local optimal solution is reached with PSO, all particles gather around it, and escaping from this local optima becomes difficult. To overcome the premature convergence of PSO, we propose a new hybrid algorithm of particle swarm optimization (PSO), simulated annealing (SA) and tabu search algorithm (TS) for solving the scattering inverse problem. The incorporation of tabu search (TS) and simulated annealing (SA) as local improvement approaches enable the hybrid algorithm to overleap local optima and intensify its search ability in local regions. Reconstructions of dielectric scatterers from experimental inverse-scattering data are finally presented to demonstrate the accuracy and efficiency of the hybrid technique.
Citation
Bouzid Mhamdi, Khaled Grayaa, and Taoufik Aguili, "Hybrid of Particle Swarm Optimization, Simulated Annealing and Tabu Search for the Reconstruction of Two-Dimensional Targets from Laboratory-Controlled Data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.
doi:10.2528/PIERB10112902
References

1. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

2. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

4. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation --- overview and recent advances," IEEE Instrum. and Meas. Mag., Vol. 10, 26-38, Apr. 2007.
doi:10.1109/MIM.2007.364985

5. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER05110801

6. Benedetti, M., M. Donelli, G. Franceschini, M. Pastorino, and A. Massa, "Effective exploitation of the a-priori information through a microwave imaging procedure based on the SMWfor NDE/NDT applications," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 11, 2584-2592, Nov. 2005.
doi:10.1109/TGRS.2005.856630

7. Zhang, Z. Q. and Q. H. Liu, "Applications of the BiCGS-FFT method to 3-D induction well logging problems," IEEE Geosci. Remote Sensing, Vol. 41, 856-869, May 2003.

8. Catapano, I., L. Crocco, R. Persico, M. Pieraccini, and F. Soldovieri, "Linear and nonlinear microwave tomography approaches for subsurface prospecting: Validation on real data," IEEE Antennas Wireless Propag. Lett., Vol. 5, 49-53, Dec. 2006.
doi:10.1109/LAWP.2006.870363

9. Crocco, L., M. D'Urso, and T. Isernia, "The contrast source-extended born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.
doi:10.2528/PIERB09080502

10. Hofmann, B. and O. Scherzer, "Factors influencing the illposedness of nonlinear problems," Inverse Problems, Vol. 10, 1277-1297, 1994.
doi:10.1088/0266-5611/10/6/007

11. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 10, 1337-1348, 1997.
doi:10.1163/156939397X00026

12. Van Den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.
doi:10.1029/95RS01764

13. Hettlich, F., "Two methods for solving an inverse conductive scattering problem ," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012

14. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

15. Liu, C.-L., C.-C. Chiu, T.-C. Tu, and M.-F. Tasi, "Electromagnetic transverse electric-wave inverse scattering of an imperfectly conducting cylinder by genetic algorithms," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 7, 1-15, Jun. 2008.

16. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure ," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902

17. Garnero, L., A. Franchois, J. P. Hugonin, C. Pichot, and N. Joachimowicz, "Microwave imaging-complex permittivity reconstruction-by simulated annealing," IEEE Trans. Microw. Theory Tech., Vol. 39, 1801-1807, 1991.
doi:10.1109/22.97480

18. Brovko Alexander, V., K. Murphy Ethan, and V. Yakovlev Vadim, "Waveguide microwave imaging: Neural network reconstruction of functional 2-D permittivity profiles," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, Feb. 2009.

19. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, 771-779, Mar. 2004.
doi:10.1109/TAP.2004.825102

20. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

21. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904

22. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three dimensional microwave imaging problems solved through an e±cient multiscaling particle swarm optimization," IEEE Geoscience and Remote Sensing, Vol. 47, 1467-1481, 2009.
doi:10.1109/TGRS.2008.2005529

23. Emad Eldin, A. M., E. A. Hashish, and M. I. Hassan, "Inversion of lossy dielectric profiles using particle swarm optimization," Progress In Electromagnetics Research M, Vol. 9, 93-105, 2009.
doi:10.2528/PIERM09072604

24. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

25. Wolpert, D. H. and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evolutionary Comp., Vol. 1, 67-82, 1997.
doi:10.1109/4235.585893

26. Fulginei, F. R. and A. Salvini, "Comparative analysis between modern heuristics and hybrid algorithms," COMPEL: Int. Journal for Comp. and Mathematics in Electrical and Electronic Engineering , Vol. 26, 259-268, 2007.
doi:10.1108/03321640710727629

27. Harrignton, R. F., Field Computation by Moments Methods, IEEE Press, Piscataway, NJ, 1993.

28. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, IEEE Service Center, Piscataway, 1995.
doi:10.1109/ICNN.1995.488968

29. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Journal of Science, Vol. 220, 671-680, 1983.
doi:10.1126/science.220.4598.671

30. Glover, F., "Tabu search: Part 1," ORSA Journal on Computing, Vol. 1, No. 3, 190-206, 1989.
doi:10.1287/ijoc.1.3.190

31. Pan, H. and X. Han, "BP network learning algorithm research and application of PSO algorithm," Computer Engineering and Application, Vol. 44, No. 9, 67-69, 2008.

32. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, 117-130, 2005.
doi:10.1088/0266-5611/21/6/S09

33. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552

34. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 771-778, 2004.

35. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging ," IEEE Trans. on Microwave Theory Tech., Vol. 51, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

36. Sudhakaran, M. and P. Ajay-D-Vimal Raj, "Integrating genetic algorithms and tabu search for unit commitment problem," International Journal of Engineering, Science and Technology, Vol. 2, 57-69, 2010.