Vol. 27
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-01-07
Computational Optimizations Towards an Accurate and Rapid Electromagnetic Emission Modeling
By
Progress In Electromagnetics Research B, Vol. 27, 365-384, 2011
Abstract
In this paper, a parametric electromagnetic radiated emission model has been explored. Several mathematical improvements with respect to its extraction and computational performance have been deployed. The model, represented with an array of radiating electric dipoles, predicts the electromagnetic emission of components and systems. Core-level changes have been made in order to extract the model parameters: the dipole positions, their orientations and currents, and the effective relative permittivity from near-field measurements. Thresholding and windowing techniques are used to detect and optimize dipole positions, directly from the field data. A fast and memory efficient two-level optimization algorithm based on the Levenberg-Marquardt non-linear least squares technique is implemented for parametric extraction. All the constraints of the previous model have been overcome and the system is validated for mono-substrate and multi-substrate devices from measurements and/or simulations, with promising results. A tremendous improvement in modeling capability and performance has been obtained when compared with that of its erstwhile counterpart.
Citation
Abhishek Ramanujan, Zoheir Riah, Anne Louis, and Belahcene Mazari, "Computational Optimizations Towards an Accurate and Rapid Electromagnetic Emission Modeling," Progress In Electromagnetics Research B, Vol. 27, 365-384, 2011.
doi:10.2528/PIERB10121605
References

1. Labussière-Dorgan, C., S. Bendhia, E. Sicard, J. Tao, H. J. Quaresma, C. Lochot, and B. Virgnon, "Modeling the electromagnetic emission of a microcontroller using a single model," IEEE Trans. Electromagn. Compat., Vol. 50, 22-34, Feb. 2008.
doi:10.1109/TEMC.2007.911918

2. Sicard, E., A. Boyer, and A. Tankielun, "On the prediction of near-field microcontroller emissions," IEEE Int. Symp. Electromagn. Compat., Chicago, USA, Aug. 2005.

3. Vives, Y. G., C. Arcambal, A. Louis, F. de Daran, P. Eudeline, and B. Mazari, "Modeling magnetic radiations of electronic circuits using near-field scanning method," IEEE Trans. Electromagn. Compat., Vol. 49, 391-400, May 2007.
doi:10.1109/TEMC.2006.890168

4. Ramanujan, A., Z. Riah, A. Louis, and B. Mazari, "Modeling the electromagnetic radiations of passive microwave components using a near-field scanning method," IEEE Trans. Electromagn. Compat., Vol. 52, No. 4, 1056-1059, Nov. 2010.
doi:10.1109/TEMC.2010.2051550

5. Ramanujan, A., Z. Riah, A. Louis, and B. Mazari, "On the radiated emission modeling of on-chip microwave components," IEEE Int. Sym. Electromagn. Compat., Florida, USA, Jul. 2010.
doi:10.1109/TEMC.2010.2051550

6. Fernández, P. L., C. Arcambal, S. Verdeyme, D. Baudry, and B. Mazari, "Near-field measurements to create a model suitable for a commercial simulation tool," 4th Inter. Conf. Electromagn. NF Charac. Imaging (ICONIC), 208-213, Taipei, Jun. 2009.

7. Fernández, P. L., C. Arcambal, S. Verdeyme, D. Baudry, and B. Mazari, "Radiation modeling and electromagnetic simulation of an active circuit," 7th Int. Work. EMC IC (EMC Compo 09), No. 58, Toulouse, France, Nov. 2009.

8. Fernández, P. L., A. Ramanujan, Y. Vives-Gilabert, C. Arcambal, A. Louis, and B. Mazari, "A radiated emission model compatible to a commercial electromagnetic simulation tool," 20th Int. Sym. Electromagn. Compat., Zurich, Jan. 2009.

9. Fernández, P. L., C. Arcambal, Y. Vives-Gilabert, A. Ramanujan, D. Baudry, A. Louis, and B. Mazari, "Development of a magnetic field model and insertion into a commercial electromagnetic simulator," Turk. J. of Elec. Eng. Comp. Sci., Vol. 17, No. 3, 289-300, 2009.

10. Sezgin, M. and B. Sankur, "Survey over image thresholding techniques and quantitative performance evalua-tion," Journal Electronic Imaging, Vol. 13, No. 1, 146-165, Jan. 2004.
doi:10.1117/1.1631315

11. Levenberg, K., "A method for the solution of certain problems in least squares," Quart. Appl. Math., Vol. 2, 164-168, 1944.

12. Marquardt, D., "An algorithm for least-squares estimation of nonlinear parameters," SIAM J. Appl. Math., Vol. 11, 431-441, 1963.
doi:10.1137/0111030

13. Moré, J. J., "The Levenberg-Marquardt algorithm: Implementation and theory," Lecture Notes in Mathematics, Vol. 630, 105-116, Springer, 1978.
doi:10.1007/BFb0067700

14. Baudry, D., C. Arcambal, A. Louis, B. Mazari, and P. Eudeline, "Applications of the near-field techniques in EMC investigations," IEEE Trans. Electromagn. Compat., Vol. 49, No. 3, Aug. 2007.
doi:10.1109/TEMC.2007.902194

15. Bouchelouk, L., Z. Riah, D. Baudry, M. Kadi, A. Louis, and B. Mazari, "Characterization of electromagnetic fields close to microwave devices using electric dipole probes," Inter. J. RF Micro. Comp. Aid. Eng., Vol. 18, 146-156, Mar. 2008.
doi:10.1002/mmce.20274