Vol. 29
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-03-14
Symmetrical Pyramidal Horn Antennas Based on EBG Structures
By
Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011
Abstract
This paper presents a novel pyramidal (EH) horn antenna based on Electromagnetic Band Gap structures (EBGs). The reported pyramidal woodpile-based horn antenna possesses a symmetrical radiation pattern and a wide operating frequency range. Such antennas can substitute metallic horns in certain circumstances, which is especially valuable for millimetre and THz devices. The principle of creating EH-horn antennas in the woodpile structure is explained in detail. In particular, this paper presents the design of a symmetrical woodpile EH-horn antenna operating at frequencies around 110 GHz. The reported antenna exhibits a wide operating bandwidth (more than 10%), while possessing high directivity and radiation efficiency equal to 16.35dBi and -0.55dB (88%) respectively.
Citation
Irina Khromova, Inigo Ederra, Ramon Gonzalo, and Bastiaan P. de Hon, "Symmetrical Pyramidal Horn Antennas Based on EBG Structures," Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011.
doi:10.2528/PIERB11020403
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Meade, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B, Vol. 44, No. 24, 13772-13774, 1991.
doi:10.1103/PhysRevB.44.13772

4. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, 1995.

5. Joannopoulos, J. D., P. R. Villeneuve, and S. Fan, "Photonic crystals: Putting a new twist on light," Nature, Vol. 386, 143, 1997.
doi:10.1038/386143a0

6. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152, 1990.
doi:10.1103/PhysRevLett.65.3152

7. Ederra, I., R. Gonzalo, C. Mann, and P. de Maagt, "(Sub)mmwave components and subsystems based on PBG technology," Proc. IEEE AP-S Int. Symp. Dig., 1087-1090, 2003.

8. Ederra, I., et al. "EBG millimetre-wave components design," Proc. 3rd ESA Workshop on Millimetre Wave Technology and Applications, 129-134, Espoo, Finland, May 21--23, 2003.

9. Ederra, I., et al. "Measurements of sub-mm and mm-wave components and subsystems based on EBG technology," Proc. 3rd ESA Workshop on Millimetre Wave Technology and Applications, 459-464, Espoo, Finland, May 21--23, 2003.

10. Ederra, I., I. Khromova, R. Gonzalo, N. Delhote, D. Baillargeat, A. Murk, B. E. J. Alderman, and P. de Maagt, "Electromagnetic band gap waveguide for the millimeter range," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 7, 1734-1741, 2010.
doi:10.1109/TMTT.2010.2050098

11. De Maagt, P., R. Gonzalo, Y. C. Vardaxoglou, and J. M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

12. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, No. 2, 404-407, 1993.
doi:10.1364/JOSAB.10.000404

13. Gonzalo, R., I. Ederra, C. M. Mann, and P. de Maagt, "Radiation properties of terahertz dipole antenna mounted on photonic crystal," Electronics Letters, Vol. 37, No. 10, 613-614, May 2001.
doi:10.1049/el:20010435

14. Ederra, I., R. Gonzalo, B. E. J. Alderman, P. G. Huggard, B. P. de Hon, M. C. van Beurden, A. Murk, L. Marchand, and P. Maagt, "Electromagnetic band gap based planar imaging array for 500 GHz," IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 11, 2556-2565, Nov. 2008.
doi:10.1109/TMTT.2008.2005926

15. Kesler, M. P., J. O. Maloney, and B. L. Shirley, "Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors," Microwave and Opt. Technology Lett., Vol. 11, No. 4, 169-174, 1996.
doi:10.1002/(SICI)1098-2760(199603)11:4<169::AID-MOP1>3.0.CO;2-I

16. Smith, G. S., M. P. Kesler, and J. G. Maloney, "Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: Gain, field patterns, and input impedance," Microwave Opt. Technol. Lett., Vol. 21, No. 3, 191-196, 1999.
doi:10.1002/(SICI)1098-2760(19990505)21:3<191::AID-MOP10>3.0.CO;2-L

17. Zhao, Z., Q. Deng, H. Xu, C. Du, and X. Luo, "A sectoral horn antenna based on the electromagnetic band-gap structures," Microwave and Opt. Technology Lett., Vol. 50, No. 4, 965-969, 2008.
doi:10.1002/mop.23254

18. Khromova, I., R. Gonzalo, I. Ederra, and P. de Maagt, "Resonance frequencies of cavities in three-dimensional electromagnetic band gap structures," Journal of Appl. Phys., Vol. 106, No. 1, 014901-1-7, 2009.
doi:10.1063/1.3156005

19. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.
doi:10.2528/PIER02010808

20. Serier, C., C. Cheype, R. Chantalat, M. Thevenot, T. Monediere, A. Reinex, and B. Jecko, "1-D photonic bandgap resonator antenna," Microwave Opt. Technol. Lett., Vol. 29, No. 5, 312-315, 2001.
doi:10.1002/mop.1164

21. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reinex, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

22. Biswas, R., E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas, and K. M. Ho, "Exceptionally directional sources with photonic-bandgap crystals," J. Opt. Soc. Am. B, Vol. 11, 1684-189, 2001.
doi:10.1364/JOSAB.18.001684

23. Weily, A. R., K. P. Esselle, and B. C. Sanders, "Photonic crystal horn and array antennas," Phys. Rev. E, Vol. 68, 016609-1-016609-6, 2003.

24. Moore, R. L., M. P. Kesler, J. G. Maloney, and B. L. Shirley, US Patent 5,689, 275, 1997.

25. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High-gain 1d ebg resonator antenna," Microwave and Opt. Technology Lett., Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095

26. Weily, A. R., K. P. Esselle, and B. C. Sanders, "Layer-by-layer photonic crystal horn antenna," Phys. Rev. E, Vol. 70, 037602-4, 2004.
doi:10.1103/PhysRevE.70.037602

27. Weily, A. R., K. P. Esselle, T. S. Bird, and B. C. Sanders, "Linear array of woodpile EBG sectoral horn antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2263-2274, 2006.
doi:10.1109/TAP.2006.879181

28. Khromova, I., I. Ederra, J. Teniente, R. Gonzalo, and K. Esselle, "Evanescently-fed electromagnetic band gap horn antennas and arrays," IEEE Trans. Antennas Propag., 2010.

29. Ho, M., C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun., Vol. 89, No. 6, 413-416, 1994.
doi:10.1016/0038-1098(94)90202-X

30. Sözüer, H. S. and J. Dowling, "Photonic band calculations for woodpile structures," J. Mod. Opt., Vol. 41, No. 2, 231-239, 1994.
doi:10.1080/09500349414550291