Vol. 29
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-03-31
Forward and Backward Waves in High-Frequency Diffraction by an Elongated Spheroid
By
Progress In Electromagnetics Research B, Vol. 29, 209-231, 2011
Abstract
The asymptotics of induced current of forward and backward waves on a strongly elongated spheroid is constructed by matching the asymptotic representations to exact solution valid in a vicinity of the rear tip of the spheroid. These asymptotic results are compared with numerical computations.
Citation
Ivan Viktorovitch Andronov, and Daniel Bouche, "Forward and Backward Waves in High-Frequency Diffraction by an Elongated Spheroid," Progress In Electromagnetics Research B, Vol. 29, 209-231, 2011.
doi:10.2528/PIERB11021805
References

1. Ruan, Y. C., X. Y. Zhou, J. Y. Chin, T. J. Cui, Y. B. Tao, and H. Lin, "The UTD analysis to EM scattering by arbitrarily convex objects using ray tracing of creeping waves on numerical meshes," IEEE AP Symposium, 1-4, 2008.

2. Fock, V. A., "Diffraction of radio-waves around the earth's surface," Journ. of Phys. of the U.S.S.R., Vol. 9, No. 4, 255, 1945.

3. Hönl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, Berlin, 1961.

4. Belkina, M. G. and L. A. Weinstein, "The characteristics of radiation of spherical surface antennas," Diffraction of Electromagnetic Waves by Some Bodies of Revolution, 57-125, Soviet Radio, Moscow, 1957 (in Russian).

5. Tran Van Nhieu, M., "Spherical wave scattering by slender bodies," IEEE Trans. UF'FC, Vol. 40, No. 4, 325-329, 1993.

6. Yeh, Z., et al. "A method for acoustic scattering by slender bodies," J. Acoust. Soc. Am., Vol. 102, No. 4, 1997.

7. Molinet, F., "Diffraction of a creeping wave on an elongated perfectly conducting or coated object by a sharp edge," ICEAA, 2009.

8. Engineer, J. C., J. R. King, and R. H. Tew, "Diffraction by slender bodies," European Journal of Applied Mathematics, Vol. 9, No. 2, 129-158, 1998.
doi:10.1017/S0956792598003441

9. Andronov, I. V., "High-frequency asymptotics for diffraction by a strongly elongated body," Antennas and Wireless Propagation Letters, Vol. 8, 872, 2009.
doi:10.1109/LAWP.2009.2026498

10. Andronov, I. V., "High frequency asymptotics of electromagnetic field on a strongly elongated spheroid," PIERS Online, Vol. 5, No. 6, 536-540, 2009.

11. Han, Y. P., L. Méés, K. F. Ren, G. Gouesbet, Z. S. Wu, and G. Grehan, "Scattering light by spheroids: The far field case," Opt. Commun., Vol. 210, 1-9, 2002.
doi:10.1016/S0030-4018(02)01755-8

12. Li, L.-W., X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley-Interscience, 2001.
doi:10.1002/0471221570

13. Molinet, F., I. V. Andronov, and D. Bouche, Asymptotic and Hybrid Methods in Electromagnetics, The Institution of Engineering and Technology, London, 2005.

14. Fock, V. A., "Theory of diffraction by a paraboloid of revolution," Diffraction of Electromagnetic Waves by Some Bodies of Revolution, 5-56, Soviet Radio, Moscow, 1957.

15. Komarov, I. V., L. I. Ponomarev, and S. Y. Slavyanov, Spheroidal and Coulomb Spheroidal Functions, Science, Science, Moscow, 1976 (in Russian).

16. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, New York, 1964.

17. Vilenkin, N. J., Special Functions and the Theory for Group Representations, American Mathematical Society, 1968.

18. Thompson, I. J. and A. R. Barnett, "COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments," Computer Physics Communications, Vol. 36, 363-372, 1985.
doi:10.1016/0010-4655(85)90025-6