Vol. 32
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-06
Bowtie Nanoantennas with Polynomial Sides in the Excitation and Emission Regimes
By
Progress In Electromagnetics Research B, Vol. 32, 57-73, 2011
Abstract
In this work, we analyze modified bowtie nanoantennas with polynomial sides in the excitation and emission regimes. In the excitation regime, the antennas are illuminated by an incident plane wave, and in the emission regime, the excitation is fulfilled by infinitesimal electric dipole positioned in the gap of the nanoantennas. Several antennas with different sizes and polynomial order were numerically analyzed by method of moments. The results show that these novel antennas possess a controllable resonance by the polynomial order and good characteristics of near field enhancement and confinement for applications in enhancement of spontaneous emission of a single molecule.
Citation
Karlo Queiroz Da Costa, and Victor A. Dmitriev, "Bowtie Nanoantennas with Polynomial Sides in the Excitation and Emission Regimes," Progress In Electromagnetics Research B, Vol. 32, 57-73, 2011.
doi:10.2528/PIERB11032808
References

1. Novotny, L., Principles of Nano-optics, Cambridge, New York, 2006.

2. Wang, H., C. T. Chong, and L. Shi, "Optical antennas and their potential applications to 10 terabit/in recording," Opt. Data Storage Top. Meet., 16-18, 2009.
doi:10.1109/ODS.2009.5031732

3. Sqalli, O., I. Utke, P. Hoffmann, and F. M.Weible, "Gold elliptical nanoantennas as probes for near field optical microscopy," J. of Appl. Physics, Vol. 92, 1078-1083, 2002.
doi:10.1063/1.1487918

4. Lyshevski, S. E. and M. A. Lyshevski, "Nano- and microopto-electromechanical systems and nanoscale active optics," Third IEEE Conf. on Nanotechnology, 2003.

5. Huang, J. S., T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett., Vol. 9, 1897-1902, 2009.
doi:10.1021/nl803902t

6. Fromm, D. P., A. Sundaramurthy, A. Kinkhabwala, P. J. Schck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," The J. of Chem. Phi., Vol. 124, 2006.

7. Parajo, M. F. G., "Optical antennas focus in on biology," Nat. Phot., Vol. 2, 201-203, 2008.
doi:10.1038/nphoton.2008.37

8. Mhlschlegel, P., et al. "Resonant optical antennas," Science, Vol. 308, 1607-1609, 2005.
doi:10.1126/science.1111886

9. Fischer, H. and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express, Vol. 16, 9144-9154, 2008.
doi:10.1364/OE.16.009144

10. Liaw, J. W., "The quantum yield of a metallic nanoantenna," Appl. Phys. A, Vol. 89, No. 10, 357-362, 2007.
doi:10.1007/s00339-007-4133-3

11. Giannini, V., J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, "Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: Nanoantenna-enhanced fluorescence," J. Opt. Soc. Am. B, Vol. 26, 1569-1577, 2009.
doi:10.1364/JOSAB.26.001569

12. Kern, A. M. and O. J. F. Martin, "Excitation and reemission of molecules near realistic plasmonic nanoestructures," Nano Lett., Vol. 11, 482-487, 2011.
doi:10.1021/nl1032588

13. Taminiau, T. H., F. D. Stefani, and N. F. V. Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Opt. Express, Vol. 16, 16858-16866, 2008.
doi:10.1364/OE.16.010858

14. Wu, Y. M., L. W. Li, and B. Liu, "Geometric effects in designing bow-tie nanoantenna for optical resonance investigation," Asia-Pacific Int. Symp. on Electromagnetic Compatibiliy, 1108-1111, 2010.

15. McMahon, J. M., S. K. Gray, and G. C. Schatz, "Optical properties of nanowires dimers with a spatially nonlocal dielectric function," Nano Lett., Vol. 10, 3473-3481, 2010.
doi:10.1021/nl101606j

16. Liaw, J. W., "Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission," IEEE J. Selec. Top. Qua. Elec., Vol. 14, 1441-1447, 2008.
doi:10.1109/JSTQE.2008.916755

17. Kinkhabwala, A., et al. "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photonics, Vol. 3, 654-657, 2009.
doi:10.1038/nphoton.2009.187

18. Livesay, D. E. and K. M. Chen, "Electromagnetic fields induced inside arbitrary shaped biological bodies," IEEE Trans. Micro. Theo. Thec., Vol. 22, 1273-1280, 1974.
doi:10.1109/TMTT.1974.1128475

19. Girard, C., E. Dujardin, G. Baffou, and R. Quidant, "Shaping and manipulation of light fields with bottom-up plasmonic structures," New J. of Physics, Vol. 10, 105016, 2008.
doi:10.1088/1367-2630/10/10/105016

20. Gu, Y., J. Li, Q. J. F. Martin, and Q. Gong, "Solving surface plasmon resonances and near field in metallic nanostructures: Green's matrix method and its applications," Chinese Science Bulletin, Vol. 55, 2608-2617, 2010.
doi:10.1007/s11434-010-4023-5

21. Ewe, W. B., H. S. Chu, E. P. Li, and E. W. Li, "Investigation of surface plasmon resonance of nanoparticles using volume integral equation," Proc. Asia-Pacific Microwave Conference, 2007.

22. Giannini, V. and J. A. S. Gil, "Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green's theorem surface integral equations in parametric form," J. Opt. Soc. Am. A, Vol. 24, 2822-2830, 2007.
doi:10.1364/JOSAA.24.002822

23. Yang, Z. Y., et al. "FDTD for plasmonics: Applications in enhanced Raman spectroscopy," Chinese Science Bulletin, Vol. 55, 2635-2642, 2010.
doi:10.1007/s11434-010-4044-0

24. Draine, B. D. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

25. Wu, Y. M., L. W. Li, and B. Liu, "Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and far-field radiation," IEEE Trans. on Magnetics, Vol. 46, 1918-1921, 2010.
doi:10.1109/TMAG.2010.2043063

26. Costa, K. Q. and V. Dmitriev, "Comparative analysis of circular and triangular gold nanodisks for field enhancement applications," J. of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, 123-130, 2010.

27. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, Inc., New Jersey, 2005.