Vol. 32
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-06
Waveguides Filled with Bilayers of Double-Negative (DNG) and Double-Positive (Dps) Metamaterials
By
Progress In Electromagnetics Research B, Vol. 32, 75-90, 2011
Abstract
Simple normalized dispersion relations for transverse magnetic (TM) and transverse electric (TE) propagating modes in parallel-plate waveguides filled with DPS/DPS or DNG/DNG, and DNG/DPS bilayers are presented. The evanescent TE0 mode of the waveguide filled with a DNG/DPS bilayer is characterized also by a simple normalized dispersion relation. Since an important behavior of the modes in the waveguide filled with a DNG/DPS bilayer is the existence of a turning point (TP) at which the power carried by the respective mode on the propagation direction equals zero and changes the sign, we present also implicit relations for determining the normalized parameters of the TM and TE modes at that TP. We show that the TP begins to exist at certain values of the normalized parameter v2 characterizing the DPS layer. For both the TM and TE modes, the higher is the mode order, the greater is the v2 parameter at which the TP begins to exist, but the behavior of the TP is different for the TM and TE modes.
Citation
Eva Cojocaru, "Waveguides Filled with Bilayers of Double-Negative (DNG) and Double-Positive (Dps) Metamaterials," Progress In Electromagnetics Research B, Vol. 32, 75-90, 2011.
doi:10.2528/PIERB11050604
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative refractive index of refraction," Science, Vol. 292, 77-99, 2001.
doi:10.1126/science.1058847

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Smith, D. R. and N. Kroll, "Negative refraction index in left handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

5. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

6. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-Media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett., Vol. 31, 129-133, 2001.
doi:10.1002/mop.1378

7. Lindell, I. V. and S. Ilvonen, "Waves in a slab of uniaxial BW medium," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 3, 303-318, 2002.
doi:10.1163/156939302X01164

8. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

9. Nefedov, I. S. and S. A. Tretyakov, "Waveguide containing a backward-wave slab," Radio Science, Vol. 38, 1101, 2003.
doi:10.1029/2003RS002900

10. Wu, B.-I., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," J. Appl. Phys., Vol. 93, 9386-9388, 2003.
doi:10.1063/1.1570501

11. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E, Vol. 67, 057602, 2003.
doi:10.1103/PhysRevE.67.057602

12. Peacock, A. C. and N. G. R. Broderick, "Guided modes in channel waveguides with a negative index of refraction," Opt. Express, Vol. 11, 2502-2510, 2003.
doi:10.1364/OE.11.002502

13. Alu, A. and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech., Vol. 52, 199-210, 2004.
doi:10.1109/TMTT.2003.821274

14. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

15. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.2528/PIER03102102

16. Li, C., Q. Sui, and F. Li, "Complex guided wave solution of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203

17. Xiao, Z. Y. and Z. H. Wang, "Dispersion characteristics of asymmetric double-negative material slab waveguides," J. Opt. Soc. Am. B, Vol. 23, 1757-1760, 2006.
doi:10.1364/JOSAB.23.001757

18. Tsakmakidis, K. L., C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability," Phys. Rev. B, Vol. 73, 085104, 2006.
doi:10.1103/PhysRevB.73.085104

19. Wang, Z. H., Z. Y. Xiao, and S. P. Li, "Guided modes in slab waveguides with a left handed material cover or substrate," Opt. Commun., Vol. 281, 607-613, 2008.
doi:10.1016/j.optcom.2007.10.034

20. McCall, M. W., "What is negative refraction?," Journal of Modern Optics, Vol. 56, 1727-1740, 2009.
doi:10.1080/09500340903324818

21. Yang, H. W., P. Dong, and Y. Liu, "Transmission properties of asymmetric slab waveguides with left-handed materials," J. Russ. Laser Res., Vol. 30, 193-203, 2009.
doi:10.1007/s10946-009-9060-7

22. Dong, P. and H. W. Yang, "Guided modes in slab waveguides with both double-negative and single-negative materials," Optica Applicata, Vol. 40, 873-882, 2010.

23. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.

24. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, 026604, 2009.
doi:10.1103/PhysRevE.79.026604