Vol. 34
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-09-18
Printed TEM Horn Antenna Fed by Balanced Microstrip Line
By
Progress In Electromagnetics Research B, Vol. 34, 247-262, 2011
Abstract
In this paper, a new kind of printed TEM horn antenna with high-gain fed by balanced microstrip line is proposed. The radiation part of the antenna (printed on the FR4 epoxy substrate) is composed of two symmetrical triangular metal foil branches fed by balanced microstrip line. The antenna has been simulated by CST MICROWAVE STUDIO® software, and the simulated results show that the proposed antenna is a kind of traveling wave antenna. Besides, an equivalent adopted V-shaped antenna model is proposed to describe the radiation characteristic of the antenna. The simulated and measured results indicate that in the frequency range from 1.64 GHz to 9 GHz, the reflection coefficient of the antenna is less than -6 dB, and in the work frequency band, the average gain value is over 8.2 dB. The antenna gain will be improved greatly by extending the length of the dielectric slab appropriately (in the main radiation direction) without influencing the bandwidth. The measured and simulated results have a good consistency. This antenna will have wide application in the UWB field.
Citation
Shu Lin, Xing-Qi Zhang, Xin-Yue Zhang, and Yu Tian, "Printed TEM Horn Antenna Fed by Balanced Microstrip Line," Progress In Electromagnetics Research B, Vol. 34, 247-262, 2011.
doi:10.2528/PIERB11080113
References

1. Baek, , Y.-H., L. H. Truong, S.-W. Park, S.-J. Lee, Y.-S. Chae, E.-H. Rhee, H.-C. Park, and J.-K. Rhee, , "94-GHz log-periodic antenna on GaAs substrate using air-bridge structure," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 909-911, 2009.
doi:10.1109/LAWP.2009.2025523

2. Chen, , T.-K. and G. H. Huff, "Stripline-fed archimedean spiral antenna," IEEE Antennas and Wireless Propagation Letters , Vol. 10, 346-349, 2011.
doi:10.1109/LAWP.2011.2141971

3. Nakano, , H., K. Kikkawa, N. Kondo, Y. Iitsuka, and J. Yamauch, "Low-pro¯le equiangular spiral antenna backed by an EBG reflector ," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1309-1318, May 2009.
doi:10.1109/TAP.2009.2016697

4., E. Bharata, A. B. Suksmono, A. Kurniawan, A. G. Yarovoy, and L. P. Ligthart, "A modified bow-tie antenna for improved pulse radiation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2184-2192, Jul. 2010.
doi:10.1109/TAP.2010.2048853

5. Abe, , H., H. Tanaka, M. Tokuda, and S. Ishigami, "Optical feeding antenna with wide bandwidth for evaluation of radiated emission test sites above 1 GHz ," Electromagnetic Compatibility, IEEE International Symposium on Digital Object Identifier, 1-6, 2008.

6. Pazin, , L. and Y. Leviatan, "A compact 60-GHz tapered slot A compact 60-GHz tapered slot," IEEE Antennas and Wireless Propagation Letters , Vol. 9, 272-275, 2010.
doi:10.1109/LAWP.2010.2046612

7. Cheng, Y. J., W. Hong, and K. Wu, "Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2903-2909, Sep. 2008.
doi:10.1109/TAP.2008.928797

8. Ranga, , Y., A. K. Verma, and K. P. Esselle, "Planar-monopole-fed, surface-mounted quasi-TEM horn antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2436-3429, Jul. 2010.
doi:10.1109/TAP.2010.2048843

9. Peytavit, , E., J.-F. Lampin, T. Akalin, and L. Desplanque., "Integrated terahertz TEM horn antenna," Electronics Letters, Vol. 43, No. 2, 73-75, 2007.
doi:10.1049/el:20073679

10. Wu, F.-T. and N.-C. Yuan, "The radiation characteristic of UWB planar TEM horn antenna array," International Conference on Radar, 1-4, 2006.

11. Che, Y., K. Li, X. Hou, and W. Tian, "Simulation of a small sized antipodal vivaldi antenna for UWB applications," IEEE International Conference, Vol. 1, 1-3, 2010.

12. Lin, , S., S. Yang, and A. E. Fathy, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503

13. Radenamad, , D., T. Aoyagi, and A. Hirose, "Low impedance bulk LTSA," IEEE Electronics Letters, Vol. 46, 882-883, 2010.
doi:10.1049/el.2010.1006

14. Janaswmy, , R., D. H. Schaubert, and , "Characteristic impedance of a wide slot line on low-permittivity substrates," IEEE Transactions on Antennas and Propagation, Vol. 34, 900-902, 1986.