Vol. 35

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-10-31

Improved Formulation of Scattering Matrices for Semi-Analytical Methods That Is Consistent with Convention

By Raymond C. Rumpf
Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011
doi:10.2528/PIERB11083107

Abstract

The literature describing scattering matrices for semi-analytical methods almost exclusively contains inefficient formulations and formulations that deviate from long-standing convention in terms of how the scattering parameters are defined. This paper presents a novel and highly improved formulation of scattering matrices that is consistent with convention, more efficient to implement, and more versatile than what has been otherwise presented in the literature. Semi-analytical methods represent a device as a stack of layers that are uniform in the longitudinal direction. Scattering matrices are calculated for each layer and are combined into a single overall scattering matrix that describes propagation through the entire device. Free space gaps with zero thickness are inserted between the layers and the scattering matrices are made to relate fields which exist outside of the layers, but directly on their boundaries. This framework produces symmetric scattering matrices so only two parameters need to be calculated and stored instead of four. It also enables the scattering matrices to be arbitrarily interchanged and reused to describe longitudinally periodic devices more efficiently. Numerical results are presented that show speed and efficiency can be increased by more than an order of magnitude using the improved formulation.

Citation


Raymond C. Rumpf, "Improved Formulation of Scattering Matrices for Semi-Analytical Methods That Is Consistent with Convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.
doi:10.2528/PIERB11083107
http://www.jpier.org/PIERB/pier.php?paper=11083107

References


    1. Helfert, S. F. and R. Pregla, "The method of lines: A versatile tool for the analysis of waveguide structures," Electromagnetics, Vol. 22, 615-637, Taylor & Francis, New York, 2002.
    doi:10.1080/02726340290084166

    2. Jamid, H. A. and M. N. Akram, "Analysis of deep waveguide gratings: An efficient cascading and doubling algorithm in the method of lines framework," J. Lightwave Technol., Vol. 20, No. 7, 1204-1209, 2002.
    doi:10.1109/JLT.2002.800350

    3. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
    doi:10.1364/JOSAA.12.001068

    4. Moharam, M. G., D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1077-1086, 1995.
    doi:10.1364/JOSAA.12.001077

    5. Berreman, D. W., "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. A, Vol. 62, No. 4, 502-510, 1972.
    doi:10.1364/JOSA.62.000502

    6. Pendry, J. B., "Photonic band structures," J. Modern Optics, Vol. 41, No. 2, 209-229, 1994.
    doi:10.1080/09500349414550281

    7. Li, Z.-Y. and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.
    doi:10.1103/PhysRevE.67.046607

    8. Matthews, Jr., E. W., "The use of scattering matrices in microwave circuits," IRE Trans. on Microwave Theory and Techniques, 21-26, 1955.
    doi:10.1109/TMTT.1955.1124941

    9. Carlin, H. J., "The scattering matrix in network theory," IRE Trans. On Circuit Theory, Vol. 3, No. 2, 88-97, 1956.

    10. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. on Microwave Theory and Techniques, 194-202, 1965.
    doi:10.1109/TMTT.1965.1125964

    11. Collin, R. E., Foundations for Microwave Engineering, 1st Ed., 170-182, McGraw Hill, New York, 1966.

    12. Pozar, D. M., Microwave Engineering, 3rd Ed., 174-183, Wiley, New York, 2005.

    13. Rizzi, P. A., Microwave Engineering Passive Circuits, 1st Ed., 168-176, Prentice Hall, New Jersey, 1988.

    14. Tan, E. L., "Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings," J. Modern Optics, Vol. 53, No. 4, 417-428, 2006.
    doi:10.1080/09500340500407701

    15. Li, L., "Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings," J. Opt. Soc. Am. A, Vol. 11, No. 11, 2829-2836, 1994.
    doi:10.1364/JOSAA.11.002829

    16. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
    doi:10.1364/JOSAA.13.001024

    17. http://cp.literature.agilent.com/litweb/pdf/5989-6353EN.pdf..

    18. Borsboom, P.-P. and H. J. Frankena, "Field analysis of two-dimensional integrated optical gratings," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1134-1141, 1995.
    doi:10.1364/JOSAA.12.001134

    19. Lin, L.-L., Z.-Y. Li, and K.-M. Ho, "Lattice symmetry applied in transfer-matrix methods for photonic crystals," J. Appl. Phys., Vol. 94, No. 2, 811-821, 2003.
    doi:10.1063/1.1587011

    20. Ko, D. Y. K. and J. R. Sambles, "Scattering matrix method for propagation of radiation in stratified media: Attenuated total reflection studies of liquid crystals," J. Opt. Soc. Am. A, Vol. 5, No. 11, 1863-1866, 1988.
    doi:10.1364/JOSAA.5.001863

    21. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
    doi:10.1364/JOSAA.13.001024

    22. Silberstein, E., P. Lalanne, J.-P. Hugonin, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A, Vol. 18, No. 11, 2865-2875, 2001.
    doi:10.1364/JOSAA.18.002865

    23. Gralak, B., S. Enoch, and G. Tayeb, "From scattering or impedance matrices to Bloch modes of photonic crystals," J. Opt. Soc. Am. A, Vol. 19, No. 8, 1547-1554, 2002.
    doi:10.1364/JOSAA.19.001547

    24. Li, L., "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A, Vol. 20, No. 4, 655-660, 2003.
    doi:10.1364/JOSAA.20.000655

    25. Kim, H., I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A, Vol. 24, No. 8, 2313-2327, 2007.
    doi:10.1364/JOSAA.24.002313

    26. Tervo, J., M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, "Efficient bragg waveguide-grating analysis by quasi-rigorous approach based on redheffer's star product," Optics Commun., Vol. 198, 265-272, 2001.
    doi:10.1016/S0030-4018(01)01530-9

    27. Green, A. A., E. Istrate, and E. H. Sargent, "Efficient design and optimization of photonic crystal waveguides and couplers: The interface diffraction method," Optics Express, Vol. 13, No. 19, 7304-7318, 2005.
    doi:10.1364/OPEX.13.007304

    28. Lalanne, P. and E. Silberstein, "Fourier-modal methods applied to waveguide computational problems," Opt. Lett., Vol. 25, No. 15, 1092-1094, 2000.
    doi:10.1364/OL.25.001092

    29. Mingaleev, S. F. and K. Busch, "Scattering matrix approach to large-scale photonic crystal circuits," Opt. Lett., Vol. 28, No. 8, 619-621, 2003.
    doi:10.1364/OL.28.000619

    30. Whittaker, D. M. and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B, Vol. 60, No. 4, 2610-2618, 1999.
    doi:10.1103/PhysRevB.60.2610

    31. Li, Z.-Y. and K. M. Ho, "Light propagation in semi-infinite photonic crystals and related waveguide structures," Phys. Rev. B, Vol. 68, 155-101, 2003.

    32. Liscidini, M., D. Gerace, L. C. Andreani, and J. E. Sipe, "Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media," Phys. Rev. B, Vol. 77, 035324, 2008.
    doi:10.1103/PhysRevB.77.035324

    33. Moharam, M. G. and A. B. Greenwell, "Efficient rigorous calculations of power flow in grating coupled surface-emitting devices," Proc. SPIE, Vol. 5456, 57-67, 2004.
    doi:10.1117/12.549477

    34. Freundorfer, A. P., "Optical vector network analyzer as a reflectometer," Appl. Opt., Vol. 33, No. 16, 3559-3561, 1994.
    doi:10.1364/AO.33.003559

    35. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 8, 302-307, 1966.

    36. Schneider, J. B. and R. J. Kruhlak, "Dispersion of homogeneous and inhomogeneous waves in the yee finite-difference time-domain grid," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 2, 280-287, 2001.
    doi:10.1109/22.903087

    37. Rumpf, R. C. Design and optimization of nano-optical elements by coupling fabrication to optical behavior, 60-84 Ph.D. Dissertation, University of Central Florida, 2006.

    38. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, No. 9, 1870-1876, 1996.
    doi:10.1364/JOSAA.13.001870

    39. Li, L., "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am A, Vol. 14, No. 10, 2758-2767, 1997.
    doi:10.1364/JOSAA.14.002758

    40. Lalanne, P., "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A, Vol. 14, No. 7, 1592-1598, 1997.
    doi:10.1364/JOSAA.14.001592

    41. Götz, P., T. Schuster, K. Frenner, S. Rafler, and W. Osten, "Normal vector method for the RCWA with automated vector field generation," Optics Express, Vol. 16, No. 22, 17295-17301, 2008.
    doi:10.1364/OE.16.017295

    42. Redheffer, R., Difference equations and functional equations in transmission-line theory, Modern Mathematics for the Engineer, Vol. 12, 282-337, E. F. Beckenbach, ed., McGraw-Hill, New York, 1961.

    43. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B, Vol. 23, No. 3, 391-403, 2006.
    doi:10.1364/JOSAB.23.000391

    44. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104

    45. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pachaco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608

    46. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617