Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-23
Electromagnetic Radiation from Unbalanced Transmission Lines
By
Progress In Electromagnetics Research B, Vol. 43, 129-150, 2012
Abstract
The classical transmission line theory is expanded to include convection current flow and electromagnetic radiation in unbalanced transmission lines. A theory for the generation of the nonlinear convection current in unbalanced transmission lines is developed. The convection current and the radiation parameters are included in the transmission line equations and a generalized transmission line theory is developed.
Citation
Mehdi Miri, and Michael McLain, "Electromagnetic Radiation from Unbalanced Transmission Lines," Progress In Electromagnetics Research B, Vol. 43, 129-150, 2012.
doi:10.2528/PIERB11090604
References

1. Manneback, C., "Radiation from transmission lines," AIEE Transactions, Vol. XLII, 289-301, 1923.

2. Moongilan, D., "Radiation characteristics of short unterminated transmission lines," IEEE International Symposium on Electromagnetic Compatibility, 57-62, 2009.
doi:10.1109/ISEMC.2009.5284638

3. Morishita, H., H. Furuuchi, and K. Fujimoto, "Performance of balance-fed antenna system for handsets in the vicinity of a human head or hand," IEE Proc. Microwaves, Antennas Propagation, Vol. 149, No. 2, 85-91, Apr. 2002.
doi:10.1049/ip-map:20020206

4. Haase, H. and J. Nitsch, "High frequency model for the transfer impedance based on a generalized transmission-line theory," IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 1242-1247, 2001.

5. Yang, N., C. Caloz, and K. Wu, "Greater than the sum of its parts," IEEE Microwave Magazine, 69-82, Jun. 2010.
doi:10.1109/MMM.2010.936495

6. Haase, H., T. Steinmetz, and J. Nitsch, "New propagation models for electromagnetic waves along uniform and nonuniform cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 345-352, 2004.
doi:10.1109/TEMC.2004.831829

7. Tang, M. and J. F. Mao, "Transient analysis of lossy nonuniform transmission lines using a time-step integration method," Progress In Electromagnetics Research, Vol. 69, 257-266, 2007.
doi:10.2528/PIER06123001

8. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using step-by-step numerical integration," Progress In Electromagnetics Research, Vol. 58, 187-198, 2006.

9. Bhattacharyya, A. K., L. Shafai, and R. Gary, "Microstrip antenna --- A generalized transmission line," Progress In Electromagnetics Research, Vol. 4, 45-84, 1991.

10. Maffucci, A., G. Miano, and F. Villone, "An enhanced transmission line model for conducting wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 4, 512-528, 2004.
doi:10.1109/TEMC.2004.837685

11. Wendt, D. O. and J. L. Ter Haseborg, "Consideration and representation of radiation losses in the transmission line theory," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1948-1951, 1994.

12. Kami, Y. and R. Sato, "Analysis of radiation characteristics of a finite-length transmission line using a circuit-concept approach," IEEE Transactions on E lectromagnetic Compatibility, Vol. 30, No. 2, 114-121, 1988.
doi:10.1109/15.2396

13. Chandia Valenzuela, K. J. and J. C. Flores, "Mesoscopic dual transmission line with discrete charge," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1021-1028, 2009.

14. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

15. Tang, M. and J. F. Mao, "Transient analysis of lossy nonuniform transmission lines using a time-step integration method," Progress In Electromagnetics Research, Vol. 69, 257-266, 2007.
doi:10.2528/PIER06123001

16. Orlandi, A. and C. R. Paul, "FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 388-399, Aug. 1996.
doi:10.1109/15.536069