Vol. 37
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-12-15
High-q Photonic Crystal Nanobeam Cavity Based on a Silicon Nitride Membrane Incorporating Fabrication Imperfections and a Low-Index Material Layer
By
Progress In Electromagnetics Research B, Vol. 37, 191-204, 2012
Abstract
We detail the optimization of a nanobeam design and show how the fabrication imperfections can affect the optical performance of the device. Then we propose the design of a novel configuration of a photonic crystal nanobeam cavity consisting of a membrane structure obtained by sandwiching a layer of Flowable Oxide (FOx) between two layers of Silicon-Nitride (SiN). Finally, we demonstrate that the presence of a low refractive index layer does not impair the performance of the nanobeam cavity that still exhibits a Q factor and mode volume V of the order of 105 and 0.02 (λ/n)3<\sup>, respectively.
Citation
Marco Grande, Giovanna Calo, Vincenzo Petruzzelli, and Antonella D'Orazio, "High-q Photonic Crystal Nanobeam Cavity Based on a Silicon Nitride Membrane Incorporating Fabrication Imperfections and a Low-Index Material Layer," Progress In Electromagnetics Research B, Vol. 37, 191-204, 2012.
doi:10.2528/PIERB11101405
References

1. Englund, E., A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature, Vol. 450, No. 7171, 857-861, 2007.
doi:10.1038/nature06234

2. Hennessy, K., A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature, Vol. 445, No. 7130, 896-899, 2007.
doi:10.1038/nature05586

3. Paintier, O., R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science, Vol. 284, 1819-1821, 1999.
doi:10.1126/science.284.5421.1819

4. Loncar, M., T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett., Vol. 81, 2680-2682, 2002.
doi:10.1063/1.1511538

5. Antonucci, D., D. De Ceglia, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, "Enhancement of SHG e±ciency in doubly resonant 2D-photonic crystal microcavity ," Optical and Quantum Electronics, Vol. 39, No. 4-6, 353-360, 2007.
doi:10.1007/s11082-007-9086-4

6. McCutcheon, M. W., J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, "Experimental demonstration of second order processes in photonic crystal microcavities at submilliwatt exitation powers ," Physics Review B, Vol. 76, 245104, 2007.
doi:10.1103/PhysRevB.76.245104

7. Antonucci, D., A. D'Orazio, D. De Ceglia, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, "A doubly resonant photonic crystal microcavity for second harmonic generation," Fiber and Integrated Optics, Vol. 26, No. 5, 271-288, 2007.
doi:10.1080/15567030701476897

8. D'Orazio, A., M. De Sario, V. Marrocco, V. Patruzzelli, and F. Prudenzano, "Photonic crystal drop filter exploiting resonant cavity configuration ," IEEE Transactions on Nanotechnology, Vol. 7, No. 1, 10-13, 2008.
doi:10.1109/TNANO.2007.913427

9. Banai, H. A. and A. Rostami, "A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 471-482, 2008.
doi:10.1163/156939308784150263

10. Grande, M., L. O'Faolain, T. P. White, M. Spurny, A. D'Orazio, and T. Krauss, "Optical filter with very large stopband (¼ 300 nm) based on a photonic crystal vertical directional coupler," Optics Letters, Vol. 34, No. 21, 3292-3294, 2009.
doi:10.1364/OL.34.003292

11. Stomeo, T., M. Grande, G. Rainò, A. Passaseo, A. D'Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, "Optical filter based on two coupled PhC GaAs-membranes," Optics Letters, Vol. 35, No. 3, 411-413, 2010.
doi:10.1364/OL.35.000411

12. Awasthi, S. K. and S. P. Ojha, "Wide-angle broadband plate polarizer with 1D photonic crystal," Progress In Electromagnetics Research, Vol. 88, 321-335, 2008.
doi:10.2528/PIER08093003

13. Li, Y., P. Gu, M. Li, H. Yan, and X. Liu, "Research on the wide-angle and broadband 2D photonic crystal polarization splitter," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 265-273, 2006.
doi:10.1163/156939306775777242

14. Shi, Y., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402

15. Maleki Javan, A. R. and N. Granpayeh, "Fast Terahertz wave switch/modulator based on photonic crystal structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 203-212, 2009.
doi:10.1163/156939309787604571

16. Calò, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 172-181, Feb. 2011.
doi:10.1109/JQE.2010.2053838

17. Song, B. S., S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials, Vol. 4, No. 3, 207-210, 2005.
doi:10.1038/nmat1320

18. Kuramochi, E., M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic rystal nanocavities realized by the local width modulation of a line defect ," Appl. Phys. Lett., Vol. 88, 041112, 2006.
doi:10.1063/1.2167801

19. Notomi, M., E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Optics Express, Vol. 16, No. 15, 11095-11102, 2008.
doi:10.1364/OE.16.011095

20. Md Zain, A. R., N. P. Johnson, M. Sorel, and R. M. De la Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Optics Express, Vol. 16, No. 16, 12084-12089, 2008.
doi:10.1364/OE.16.012084

21. Khan, M., T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, "Fabrication and characterization of high-quality factor silicon nitride nanobeam cavities," Optics Letters, Vol. 36, No. 3, 421-423, 2011.
doi:10.1364/OL.36.000421

22. Quan, Q., P. B. Deotare, and M. Lonkar, "Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide," Appl. Phys. Lett., Vol. 96, 203102, 2010.
doi:10.1063/1.3429125

23. Frank, I. W., P. B. Deotare, M. W. McCutcheon, and M. Loncar, "Programmable photonic crystal nanobeam cavities," Optics Express, Vol. 18, No. 8, 8705-8712, 2010.
doi:10.1364/OE.18.008705

24. Bayn, I., B. Meyler, J. Salzman, and R. Kalish, "Triangular nanobeam photonic cavities in single-crystal diamond," New ournal of Physics, Vol. 13, 025018, 2011.
doi:10.1088/1367-2630/13/2/025018

25. Qualtieri, A., F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, "Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities," Microelectronic Engineering, Vol. 87, 1435-1438, 2010.
doi:10.1016/j.mee.2009.11.133

26. Lalanne, P., C. Sauvan, and J. Hugonin, "Photon confinement in photonic crystal nanocavities," Laser & Photonics Reviews, Vol. 2, 514-526, 2008.
doi:10.1002/lpor.200810018

27. RSoft Suite, FullWAVE user guide.

28. Pisanello, F., L. Martiradonna, A. Qualtieri, T. Stomeo, M. Grande, P. P. Pompa, R. Cingolani, A. Bramati, and M. De Vittorio, "Silicon nitride PhC nanocavities as versatile platform for visible spectral range devices," Photonics and Nanostructures --- Fundamentals and Applications, Aug. 22, 2011, ISSN 1569-4410, Available online, 10.1016/j.photonics.2011.08.003.

29. Rivoire, K., S. Buckley, and J. Vuckovic, "Multiply resonant high quality photonic crystal nanocavities," Appl. Phys. Lett., Vol. 99, 013114, 2011.
doi:10.1063/1.3607281