Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-08
Analysis of Frequency Selective Surfaces for Radar Absorbing Materials
By
Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012
Abstract
Nowadays, applications of Frequency Selective Surfaces (FSS) for radar absorbing materials (RAM) are increasing, but it is still a challenge to select a proper FSS for a particular material as well as the dimensions of FSS for optimized absorption. Therefore, in this paper an attempt has been made to optimize the dimensions of FSS for microwave absorbing application using Genetic Algorithm (GA) approach. The considered frequency selective surfaces are composed of conducting patch elements pasted on the ferrite layer. FSS are used for filtration and microwave absorption. In this work, selection and optimization of FSS with radar absorbing material has been done for obtaining the maximum absorption at 8-12 GHz frequency. An equivalent circuit method has been used for the analysis of different FSS, which is further used to design fitness function of GA for optimizing the dimensions of FSS. Eight different available ferrite materials with frequency dependant permittivities and permeabilities have been used as material database. The GA optimization is proposed to select the proper material out of eight available materials with proper dimensions of FSS. The optimized results suggest the material from database and dimensions of FSS. The selected material is then mixed with epoxy and hardener, and coated over the aluminium sheet. Thereafter, all five FSS were fabricated on ferrite coated Al sheets using photolithographic method followed by wet etching. The absorption was measured for all FSS using absorption testing device (ATD) method at X-band. Absorption results showed that significant amount of absorption enhanced with the addition of proper FSS on radar absorbing coating.
Citation
Dharmendra Singh, Abhishek Kumar, Shivram Meena, and Vijaya Agarwala, "Analysis of Frequency Selective Surfaces for Radar Absorbing Materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
doi:10.2528/PIERB11121601
References

1. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley and Sons, Inc., New York, 2000.
doi:10.1002/0471723770

2. Wu, T. K., Frequency Selective Surfaces and Grid Array, John Wiley and Sons, Inc., New York, 1995.

3. Liu, H. T., H. F. Cheng, Z. Y. Chu, et al. "Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches," Material Design, Vol. 28, 2166-2171, 2007.
doi:10.1016/j.matdes.2006.06.011

4. Mias, C., C. Tsakonas, and C. Oswald, An investigation into the feasibility of designing frequency selective windows employing periodic structures, (Ref. AY3922), Tech. Rep., Final Report for the Radio-communications Agency, Nottingham Trent University, 2001.

5. Sakran, F. and Y. Neve-Oz, "Absorbing frequency-selective-surface for the mm-wave range," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2649-2655, 2008.
doi:10.1109/TAP.2008.924701

6. Arya, F., M. Matthew, H. Christian, and V. Rüdiger, "Efficient procedures for the optimization of frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1340-1349, 2008.
doi:10.1109/TAP.2008.922678

7. Munk, B. A., R. J. Luebbers, and R. D. Fulton, "Transmission through a two-layer array of loaded slots," IEEE Transactions on Antennas and Propagation, Vol. 22, 804-809, 1974.
doi:10.1109/TAP.1974.1140902

8. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Physics, Vol. 7, 37-55, 1967.
doi:10.1016/0020-0891(67)90028-0

9. Durschlag, M. S. and T. A. DeTemple, "Far-IR optical properties of freestanding and dielectrically backed metal meshes," Applied Optics, Vol. 20, 1245-1253, Mar. 1981.
doi:10.1364/AO.20.001245

10. Chen, H. Y., X. Y. Hou, and L. J. Deng, "A novel microwave absorbing structure using FSS metamaterial," PIERS Proceedings, 1195-1198, Moscow, Russia, Aug. 18--21, 2009.

11. Simms, S. and V. Fusco, "Tunable thin radar absorber using artificial magnetic ground plane with variable backplane," Electronics Letters, Vol. 42, No. 21, 1197-1198, 2006.
doi:10.1049/el:20061989

12. Kominami, M., H. Wakabayashi, S. Sawa, and H. Nakashima, "Scattering from a periodic array of arbitrary shaped elements on a semi infinite substrate," Electronics and Communications in Japan (Part I: Communications), Vol. 77, No. 1, 85-94, 1994.
doi:10.1002/ecja.4410770109

13. Bardi, I., R. Remski, D. Perry, and Z. Cendes, "Plane wave scattering from frequency-selective surfaces by the finite-element method," IEEE Transactions on Magnetics, Vol. 38, No. 2, 641-644, 2002.
doi:10.1109/20.996167

14. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronic Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

15. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence," IEE Proceeding H, Vol. 132, No. 6, 395-399, 1985.

16. Dubrovka, R., J. Vazquez, C. Parini, and D. Moore, "Equivalent circuit method for analysis and synthesis of frequency selective surfaces," IEE Proceeding on Microwave Antennas Propagation, Vol. 153, No. 3, 213-220, 2006.
doi:10.1049/ip-map:20050198

17. Sung, G. H., K. W. Sowerby, and A. G. Williamson, "Equivalent circuit modelling of a frequency selective plasterboard wall," IEEE Antennas and Propagation Society International Symposium, Vol. 4A, 400-403, 2005.

18. Philippakis, M., C. Martel, D. Kemp, S. Appleton, and S. Massey, Application of FSS structures to selectively control the propagation of signals into and out of buildings annex 3: Enhancing propagation into buildings, Final Report, ERA Project 51-CC-12033, ERA Report, 2004.

19. Campos, A. L. P. D. S., "Analysis of frequency selective surfaces with metallic and dielectric losses at millimeter wave range," Int. J. Infrared Milli Waves, Vol. 29, 684-692, 2009.

20. Kumar, R., Study and characterization of Zn-Mn and Zn-Co ferrite using FSSs at microwave frequency, ME Dissertation in Electronics and Communication Engineering, Department of E. & C., IIT Roorkee, 1998.

21. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit," Electronics Letters, Vol. 19, No. 17, 675-677, 1983.
doi:10.1049/el:19830460

22. Kiani, G. I., A. R. Weily, and K. P. Esselle, "Frequency selective surface absorber using resistive cross-dipoles," IEEE Antennas and Propagation Society International Symposium, 4199-4202, 2006.
doi:10.1109/APS.2006.1711555

23. Langley, R. J. and A. J. Drinkwater, "Improved empirical model for the jerusalem cross," Microwaves, Optics and Antennas, IEE Proceedings H, Vol. 129, No. 1, 1-6, 1982.
doi:10.1049/ip-h-1.1982.0001

24. Huiling, Z., G. B. Wan, and W. Wan, "Absorbing properties of frequency selective surface absorbers on a lossy dielectric slab," PIERS Proceedings, 165-168, Beijing, China, Mar. 23--27, 2009.

25. Parida, R. C., D. Singh, and N. K. Agarwal, "Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band," Indian Journal of Radio & Space Physics, Vol. 36, No. 2, 145-152, 2007.

26. Meshram, M. R., N. K. Agrawal, B. Sinha, and P. S. Misra, "A study on the behaviour of M-type barium hexagonal ferrite based microwave absorbing paints," Bulletin of Materials Science, Vol. 25, No. 2, 169-173, 2002.
doi:10.1007/BF02706238

27. Park, K. Y., S. E. Lee, C. G. Kim, and J. H. Han, "Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures," Composites Science and Technology, Vol. 66, 576-584, 2006.
doi:10.1016/j.compscitech.2005.05.034

28. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, Vol. 38, No. 1, 61-64, 2003.
doi:10.1002/mop.10971

29. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters, Vol. 38, No. 1, 61-64, 2003.
doi:10.1002/mop.10971

29. Folgueras, L. d. C., E. L. Nohara, R. Faez, and M. C. Rezende, "Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline," Materials Research, Vol. 10, No. 1, 95-99, 2007.
doi:10.1590/S1516-14392007000100020

30. Sugimoto, S., S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, and M. Homma, "M-type ferrite composite as a microwave absorber with wide bandwidth in GHz," IEEE Transactions on Magnetics, Vol. 35, No. 5, 3154-3156, 1999.
doi:10.1109/20.801112

31. Filippo, C., A. Claudio, M. Agostino, and E. Prati, "Waveguide dielectric permittivity measurement technique based on resonant FSS filters," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 273-275, 2011.
doi:10.1109/LMWC.2011.2122303

32. Luo, X. F., P. T. Teo, A. Qing, and C. K. Lee, "Design of double-square-loop frequency-selective surfaces using differential evolution strategy coupled with equivalent-circuit model," Microwave and Optical Technology Letters, Vol. 44, No. 2, 159-162, 2005.
doi:10.1002/mop.20575