Vol. 46
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-11-25
The Field of a Magnetic Dipole and the Polarizability of a Superconducting Object Embedded in the Interface Between Magnetic Materials
By
Progress In Electromagnetics Research B, Vol. 46, 101-118, 2013
Abstract
|In this paper, a careful study is made of the magnetostatic potential and eld of a magnetic dipole embedded in, and with dipole moment parallel to, the interface between two magnetic regions. Unlike the case of a magnetic dipole perpendicular to the interface, the detailed position of the current of the dipole relative to the location of the interface has a profound effect on the value of the field produced away from the dipole. As a consequence, the question of de ning and determining the magnetic polarizability of a superconducting object partially embedded in a magnetic interface is examined. The results of this paper are important for the proper modeling of arrays of scatterers embedded in an interface, such as frequency-selective surfaces (FSSs) and meta lms.
Citation
Mohamed Abed Mohamed, Edward F. Kuester, and Mustapha Yagoub, "The Field of a Magnetic Dipole and the Polarizability of a Superconducting Object Embedded in the Interface Between Magnetic Materials," Progress In Electromagnetics Research B, Vol. 46, 101-118, 2013.
doi:10.2528/PIERB12070313
References

1. Kuester, E. F., M. A. Mohamed, M. Piket-May, and C. L. Hol-loway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas and Propagation, Vol. 51, 2641-2651, 2003.
doi:10.1109/TAP.2003.817560

2. Mohamed, M. A., Generalized Sheet Transition Conditions for Metafilm and Its Applications, Ch. 4, Ph.D. Thesis, University of Colorado at Boulder, 2005.

3. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Electromagnetic Compatibility, Vol. 47, 853-865, 2005.
doi:10.1109/TEMC.2005.853719

4. Holloway, C. L., P. Kabos, M. A. Mohamed, E. F. Kuester, M. D. Janezic, and J. Baker-Jarvis, "Realization of a controllable metafilm (`Smart Surface') composed of resonant magnetodielectric particles: Measurements and theory," IEEE Trans. Antennas and Propagation, Vol. 47, 853-865, 2005.

5. Mohamed, M. A., E. F. Kuester, M. Piket-May, and C. L. Holloway, "The field of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408

6. Boella, M. and F. Einaudi, "Note didattiche sul problema di Sommerfeld," Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Vol. 96, 820-838, 1962.

7. Adonina, A. I. and V. V. Shcherbak, "Equivalent boundary conditions at a metal grating situated between two magnetic materials," Zh. Tekh. Fiz., Vol. 34, 333-335, 1964 (in Russian), [English Translation in Sov. Phys. Tech. Phys., Vol. 9, 261-263, 1964].

8. Bankov, S. Y. and I. V. Levchenko, "Equivalent boundary conditions for a closely spaced ribbon grating at the interface of two media," Radiotekh. Elektron, Vol. 33, 2045-2050, 1988, (in Russian) [English Translation in Sov. J. Commun. Technol. Electron., Vol. 34, No. 5, 67-72, 1989].

9. Hanson, J. D. and S. P. Hirshman, "Compact expressions for the Biot-Savart fields of a filamentary segment," Phys. Plasmas, Vol. 9, 4410-4412, 2002.
doi:10.1063/1.1507589

10. Durand, E., "Magnetostatique,", Masson et Cie., Paris, 1968.

11. Portis, A. M., Electromagnetic Fields: Sources and Media, 217, Wiley, New York, 1978.

12. Gri±ths, D. J., "Introduction to Electrodynamics," Prentice Hall, Upper Saddle River, NJ, 1999.

13. Sezginer, A., T. M. Habashy, and J. R. Wait, "An image method to compute the static magnetic field due to currents injected into a homogeneous, conducting, and magnetically polarizable half-space," Radio Science, Vol. 23, 41-45, 1988.
doi:10.1029/RS023i001p00041

14. Idemen, M., "Universal boundary relations for the electromagnetic field," J. Phys. Soc. Japan, Vol. 59, 71-80, 1990.
doi:10.1143/JPSJ.59.71

15. Baum, C. E., "The magnetic polarizability dyadic and point symmetry," Detection and Identification of Visually Obscured Targets, C. E. Baum, Ed., 219-242, Taylor and Francis, Philadelphia, 1998, [Also AFWL Interaction Note 502, Kirtland Air Force Base, Albuquerque, NM, 1994].

16. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Sections 5.11-5.12, John Wiley and Sons, Inc., New York, 1998.