Vol. 45
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-30
Spherical Slotted Antenna Coated with Double Layer of Materials Having Combinations of Singly and Doubly Negative Parameters and Consequences of Mode Resonances
By
Progress In Electromagnetics Research B, Vol. 45, 223-249, 2012
Abstract
This work studies the influence of material coatings, especially combined natural and metamaterials, on the radiation properties of a practical dipole like antenna, represented by a slotted conducting sphere. The selected geometry allows an exact solution to the problem, and thus the development of exact expressions for the antenna parameters, like the radiated power and directivity. It is shown that for materials with combined positive and negative parameters, mode resonances can occur at thinner coatings, the thickness of which can be made diminishingly small by proper selection of coating parameters. In particular, at these resonances the antenna directivity, while being finite, becomes independent of the antenna size and coating parameters.
Citation
Malcolm Ng Mou Kehn, "Spherical Slotted Antenna Coated with Double Layer of Materials Having Combinations of Singly and Doubly Negative Parameters and Consequences of Mode Resonances," Progress In Electromagnetics Research B, Vol. 45, 223-249, 2012.
doi:10.2528/PIERB12081102
References

1. Karr, P. R., "Radiation properties of spherical antennas as a function of the location of the driving force," J. Res. Natl. Bur. Stand., Vol. 46, 422-436, 1951.
doi:10.6028/jres.046.045

2. Mushiake, Y. and R. E. Webster, "Radiation characteristics with power gain for slots on a sphere," IRE Trans. Antennas Propag., Vol. 5, No. 1, 47-55, Jan. 1957.
doi:10.1109/TAP.1957.1144465

3. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.

4. Towaij, S. J. and M. A. K. Hamid, "Diffraction by a multilayered dielectric-coated sphere with an azimuthal slot," Proc. IEEE, Vol. 119, 1209-1214, Sep. 1971.

5. Shafai, L. and R. K. Chugh, "Resonance effects in slotted spherical antennas coated with homogeneous materials," Can. J. Phys., Vol. 51, 2341-2346, 1973.
doi:10.1139/p73-306

6. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604

7. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

8. Hamid, A. K., "Axially slotted antenna on a circular or elliptic cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 51, 329-341, 2005.
doi:10.2528/PIER04082301

9. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnet ics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901

10. Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, N. P. Yashina, and G. Granet, "Resonant scattering of electromagnetic wave by stripe grating backed with a layer of metamaterial," Progress In Electromagnetics Research B, Vol. 15, 423-441, 2009.
doi:10.2528/PIERB09052302

11. Choi, J. and C. Seo, "High-e±ciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

12. Han, L., S. Chen, A. Schulzgen, Y. Zeng, F. Song, J.-G. Tian, and N. Peyghambarian, "Calculation and optimization of electromagnetic resonances and local intensity enhancements for plasmon metamaterials with sub-wavelength double-slots," Progress In Electromagnetics Research, Vol. 113, 161-177, 2011.

13. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506

14. Engheta, N. and R. W. Ziolkowski, Metamaterials Physics and Engineering Explorations, IEEE Press, Wiley Interscience, New Jersey, 2006.

15. Eletheriades, G. V. and K. G. Balmain, Negative-reflection Metamaterials, Fundamental Principles and Applications, John Wiley and Sons Inc., New Jersey, 2005.
doi:10.1002/0471744751

16. Caloz, C. and T. Ito, "Electromagnetic Metamaterials, Transmission Line, Theory and Microwave Applications," John Wiley and Sons Inc., New Jersey, 2006.

17. Harrington, R. F., Time-harmonic Electromagnetic Fields,, McGraw-Hill, New York, 1961.

18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, Inc., 1989.

19. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., John Wiley and Sons Inc., New Jersey & Canada , 2005.

20. Budden, K. G. and H. G. Martin, "The ionosphere as a whispering gallery," Proceedings of the Royal Soc. of London. Series A Mathematical and Physical Sciences, Vol. 265, No. 1323, 554-569, Feb. 1962.
doi:10.1098/rspa.1962.0042

21. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Physical Review Letters, Vol. 93, No. 13, 2004, DOI: 10.1103/PhysRevLett.93.137404.
doi:10.1103/PhysRevLett.93.137404

22. Seo, M. A., H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nature Photonics, 152-156, 2009, DOI: 10.1038/NPHOTON.2009.22.
doi:10.1038/nphoton.2009.22

23. Sadiq, D., J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, "Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles," Nano Letter, Vol. 11, 1609-1613, 2011.
doi:10.1021/nl1045457

24. Kang, J. H., D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Physical Review Letter, 1-2, 2010, DOI: 10.1103/PhyRevLett.102.093906.