Vol. 52
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-06-06
Compact-Like Pulse Signals in a New Nonlinear Electrical Transmission Line
By
Progress In Electromagnetics Research B, Vol. 52, 207-236, 2013
Abstract
A nonlinear electrical transmission line with an intersite circuit element acting as a nonlinear resistance is introduced and investigated. In the continuum limit, the dynamics of localized signals is described by a non-linear evolution equation belonging to the family of nonlinear diffusive Burgers' equations. This equation admits compact pulse solutions and shares some symmetry properties with the Rosenau-Hyman K(2,2) equation. An exact discrete compactly-supported signal voltage is found for the network and the dissipative effects on the pulse motion analytically studied. Numerical simulations confirm the validity of analytical results and the robustness of these compact pulse signals which may have important applications in signal processing systems.
Citation
Desire Ndjanfang, David Yemele, Patrick Marquie, and Timoleon Crepin Kofane, "Compact-Like Pulse Signals in a New Nonlinear Electrical Transmission Line," Progress In Electromagnetics Research B, Vol. 52, 207-236, 2013.
doi:10.2528/PIERB13030207
References

1. Rosenau, P. and J. M. Hyman, "Compactons: Solitons with finites wavelength," Phys. Rev. Lett., Vol. 70, 564-567, 1993.
doi:10.1103/PhysRevLett.70.564

2. Remoissenet, M., Waves Called Solitons, 3rd Ed., Springer-Verlag, Berlin, 1999.
doi:10.1007/978-3-662-03790-4

3. Rosenau, P. and E. Kashdan, "Compactification of nonlinear patterns and waves," Phys. Rev. Lett., Vol. 101, 264101-264105, 2008.
doi:10.1103/PhysRevLett.101.264101

4. Destrade, M., G. Gaeta, and G. Saccomandi, "Weierstrasss criterion and compact solitary waves," Phys. Rev. E, Vol. 75, 047601-047605, 2007.
doi:10.1103/PhysRevE.75.047601

5. Gaeta, G., T. Gramchev, and S. Walcher, "Compact solitary waves in linearly elastic chains with non-smooth on-site potential," J. Phys. A: Math. Theor., Vol. 40, 4493-4509, 2007.
doi:10.1088/1751-8113/40/17/007

6. Rosenau, P., "On compactification of patterns by a singular convection or stress," Phys. Rev. Lett., Vol. 99, 234102-234107, 2007.
doi:10.1103/PhysRevLett.99.234102

7. Kivshar, Y. S., "Intrinsic localized modes as solitons with a compact support," Phys. Rev. E , Vol. 48, 43-45, 1993.
doi:10.1103/PhysRevE.48.R43

8. Kevrekidis, P. G., V. V. Konotop, A. R. Bishop, and S. Takeno, "Discrete compactons: Some exact resuts," J. Phys. A: Math. Gen. , Vol. 35, 641-652, 2002.
doi:10.1088/0305-4470/35/45/103

9. Dusuel, S., P. Michaux, and M. Remoissenet, "From kinks to compacton like kinks," Phys. Rev. E, Vol. 57, 2320-2326, 1998.
doi:10.1103/PhysRevE.57.2320

10. Ludu, A. and J. P. Draayer, "Patterns on liquid surfaces cnoidal waves, compactons and scaling," Physica D, Vol. 123, 82-91, 1998.
doi:10.1016/S0167-2789(98)00113-4

11. Grimshaw, R. H. J., L. A. Ostrovsky, V. I. Shrira, and Y. A. Stepanyants, "Long nonlinear surface and internal gravity waves in a rotating ocean ," Surv. Geophys. , Vol. 19, 289-338, 1998.
doi:10.1023/A:1006587919935

12. Takeno, S., "Compacton-like modes in model DNA systems and their bearing on biological functioning," Phys. Lett. A, Vol. 339, 352-360, 2005.
doi:10.1016/j.physleta.2005.01.081

13. Rosenau, P. and A. Pikovsky, "Phase compactons in chains of dispersively coupled oscillators," Phys. Rev. Lett., Vol. 94, 174102-174106, 2005.
doi:10.1103/PhysRevLett.94.174102

14. Pikovsky, A. and P. Rosenau, "Phase compactons," Physica D, Vol. 218, 56-69, 2006.
doi:10.1016/j.physd.2006.04.015

15. Takahashi, D. and J. Satsuma, "Explicit solutions of magma equation," J. Phys. Soc. Jpn., Vol. 57, 417-421, 1988.
doi:10.1143/JPSJ.57.417

16. Simpson, G., M. I. Weinstein, and P. Rosenau, "On a hamiltonian PDE arising in magma dynamics," Disc. and Cont. Dynamical Systems B, Vol. 10, 903-924, 2008.
doi:10.3934/dcdsb.2008.10.903

17. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series ," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.
doi:10.2528/PIER09080106

18. Afshari, E., H. S. Bhat, A. Hajimiri, and J. E. Marsden, "Extremely wideband signal shaping using one and two dimensional nonuniform nonlinear line ," J. Appl. Phys., Vol. 99, 054901-054917, 2006.
doi:10.1063/1.2174126

19. Narahara, , K. and M. Nakamura, "Compensation of polarization mode dispersion with electrical nonlinear transmission lines," Jpn. J. Appl. Phys., Vol. 42, 6327-6334, 2003.
doi:10.1143/JJAP.42.6327

20. Narahara, K., "Coupled nonlinear transmission lines for doubling repetition rate of incident pulse streams," Progress In Electromagnetics Research Letters , Vol. 16, 69-78, 2010.
doi:10.2528/PIERL10070106

21. Narahara, K., "Characterization of partially nonlinear transmission lines for ultrashort-pulse amplification," Jpn. J. Appl. Phys., Vol. 42, 5508-5515, 2003.
doi:10.1143/JJAP.42.5508

22. Comte, J. C. and P. Marquie, "Compact-like kink in real electrical eaction-diffusion chain," Chaos, Soliton, Fractals, Vol. 29, 307-312, 2006.
doi:10.1016/j.chaos.2005.08.212

23. Yemele, D. and F. Kenmogne, "Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line," Phys. Lett. A, Vol. 373, 3801-3809, 2009.
doi:10.1016/j.physleta.2009.08.067

24. Kenmogne, F. and D. Yemele, "Exotic modulated signals in a nonlinear electrical transmission line: Modulated peak solitary wave and gray compacton," Chaos, Solitons, Fractals, Vol. 45, 21-34, 2012.
doi:10.1016/j.chaos.2011.09.009

25. English, L. Q., R. Basu Thakur, and R. Stearrett, "Patterns of travelling intrinsic localized modes in a driven electrical lattice," Phys. Rev. E, Vol. 77, 066601-066605, 2008.
doi:10.1103/PhysRevE.77.066601

26. Marquie, P., S. Binczak, J. C. Comte, B. Michaux, and J. M. Bilbault, "Diffusion effects in a nonlinear electrical lattice," Phys. Rev. E, Vol. 57, 6075-6078, 1998.
doi:10.1103/PhysRevE.57.6075

27. Comte, J. C., P. Marquie, J. M. Bilbault, and S. Binczak, "Noise removal using a nonlinear two-dimensional diffusion network," Ann. Telecommun., Vol. 53, 483-487, 1998.

28. Nguena, H. K., S. Noubissi, and P.Woafo, "Waves amplification in nonlinear transmission lines using negative nonlinear resistance," J. Phys. Soc. Jpn., Vol. 73, 1147-1150, 2004.
doi:10.1143/JPSJ.73.1147

29. Ndzana, F., A. Mohamadou, and T. C. Kofane, "Modulated waves and chaotic-like behaviours in the discrete electrical line," J. Phys. D: Appl. Phys., Vol. 40, 3254-3262, 2007.
doi:10.1088/0022-3727/40/10/035

30. Binzak, S., J. C. Comte, B. Michaux, P. Marquie, and and, "Experimental nonlinear electrical reactiondiffusion lattice," Electron. Lett., Vol. 34, 1061-1062, 1998.
doi:10.1049/el:19980774

31. Saccomandi, G. and I. Sgura, "The relevance of nonlinear stacking interactions in simple models of double-stranded DNA," J. R. Soc. Interface, Vol. 3, 655-667, 2006.
doi:10.1098/rsif.2006.0126

32. Nguetcho, A. S., J. R. Bogning, D. Yemele, and T. C. Kofane, "Kink compactons in models with parametrized periodic double-well and asymmetric substrate potentials," Chaos, Solitons Fractals, Vol. 21, 165-176, 2004.
doi:10.1016/j.chaos.2003.10.034