Vol. 56
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-11-18
A Combined FDTD/TLM Time Domain Method to Solve Efficiently Electromagnetic Problems
By
Progress In Electromagnetics Research B, Vol. 56, 409-427, 2013
Abstract
Modeling complex networks of cables inside structures and modeling disjoint objects connected by cables inside large computational domains with respect to the wavelength are two problems that currently present many difficulties. In this paper, we propose a 1D/3D hybrid method in time domain to solve efficiently these two kinds of problems. The method, based upon finite difference schemes, couples Maxwell's equations to evaluate electromagnetic fields in 3D domains and the transmission line equations to evaluate currents and voltages on cables. Some examples are presented to show the interest of this approach.
Citation
Nathanael Muot, Christophe Girard, Xavier Ferrieres, and Elodie Bachelier, "A Combined FDTD/TLM Time Domain Method to Solve Efficiently Electromagnetic Problems," Progress In Electromagnetics Research B, Vol. 56, 409-427, 2013.
doi:10.2528/PIERB13092402
References

1. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Trans. on Electromagnetic Compatibility, Vol. 23, No. 2, 88-97, 1981.
doi:10.1109/TEMC.1981.303899

2. Berenger, J. P., "A multiwire formalism for the FDTD method," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.
doi:10.1109/15.865332

. Guiffaut, C., A. Reineix, and B. Pecqueux, "New oblique thin wire formalism in the FDTD method with multiwire junctions," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 3, 1458-1466, 2012.
doi:10.1109/TAP.2011.2180304

4. Edelvik, F., "A new technique for accurate and stable modeling of arbitrarily oriented thin wires in the FDTD method," IEEE Trans. on Electromagnetic Compatibility, Vol. 45, No. 2, 416-423, 2003.
doi:10.1109/TEMC.2003.811294

5. Baum, C. E., T. K. Liu, and F. Tesche, "On the analysis of general multiconductor transmission-line networks," Interactions Notes, Note 350, 1978.

6. Paletta, L., J. P. Parmantier, F. Issac, P. Dumas, and J. C. Alliot, "Susceptibility analysis of wiring in a complex system combining a 3D solver and a transmission-line network simulation ," IEEE Trans. on Electromagnetic Compatibility, Vol. 44, No. 2, 309-317, 2002.
doi:10.1109/TEMC.2002.1003395

7. Ferrieres, X., J. P. Parmantier, S. Bertuol, and A. Ruddle, "Application of hybrid finite difference/finite volume to solve an automotive problem," IEEE Trans. on Electromagnetic Compatibility, Vol. 46, No. 4, 624-634, 2004.
doi:10.1109/TEMC.2004.837837

8. Mouysset, V., P. A. Mazet, and P. Borderies, "A multi-domain decomposition method to solve electromagnetic scattering problems in time domain ," Radio Science, Vol. 42, RS4009, 2007.
doi:10.1029/2005RS003417

9. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.

10. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.

11. Taflove, A., S. C. Hagness, and , "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2005.

12. Berenger, J. P., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 110-117, 1996.
doi:10.1109/8.477535

13. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Blackwell, 2007.

14. Vance, E. F., Coupling to Shielded Cables, Wiley, New York, 1978.

15. Paul, C. R. and A. E. Feather, "Computation of the transmission line inductance and capacitance matrices from the generalized capacitance matrix ," IEEE Trans. on Electromagnetic Compatibility, Vol. 18, No. 4, 175-183, 1976.
doi:10.1109/TEMC.1976.303498

16. Clements, J. C., C. R. Paul, and A. T. Adams, "Computation of the capacitance matrix for systems of dielectric-coated cylindrical conductors ," IEEE Trans. on Electromagnetic Compatibility, Vol. 17, No. 4, 238-248, 1975.
doi:10.1109/TEMC.1975.303430

17. Tesche, F. M., M. V. Ianov, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, 1997.

18. Rao, S. M., Time Domain Electromagnetics, David J. Ed., Auburn University, Academic Press, 1999.