Vol. 59
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-04-01
Patch and Ground Plane Design of Microstrip Antennas by Material Distribution Topology Optimization
By
Progress In Electromagnetics Research B, Vol. 59, 89-102, 2014
Abstract
We use a gradient-based material distribution approach to design conductive parts of microstrip antennas in an efficient way. The approach is based on solutions of the 3D Maxwell's equation computed by the finite-difference time-domain (FDTD) method. Given a set of incoming waves, our objective is to maximize the received energy by determining the conductivity on each Yee-edge in the design domain. The objective function gradient is computed by the adjoint-field method. A microstrip antenna is designed to operate at 1.5 GHz with 0.3 GHz bandwidth. We present two design cases. In the first case, the radiating patch and the finite ground plane are designed in two separate phases, whereas in the second case, the radiating patch and the ground plane are simultaneously designed. We use more than 58,000 design variables and the algorithm converges in less than 150 iterations. The optimized designs have impedance bandwidths of 13% and 36% for the first and second design case, respectively.
Citation
Emadeldeen Hassan, Eddie Wadbro, and Martin Berggren, "Patch and Ground Plane Design of Microstrip Antennas by Material Distribution Topology Optimization," Progress In Electromagnetics Research B, Vol. 59, 89-102, 2014.
doi:10.2528/PIERB14030605
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.

2. Sadiku, M. N., Numerical Techniques in Electromagnetics, 2nd Ed., CRC Press, 2001.

3. Chung, K. L. and A. Mohan, "A systematic design method to obtain broadband characteristics for singly-fed electromagnetically coupled patch antennas for circular polarization," IEEE Trans. Antennas Propag., Vol. 51, No. 12, 3239-3248, 2003.
doi:10.1109/TAP.2003.820949

4. Yang, S. S., K.-F. Lee, A. A. Kishk, K.-M. Luk "Design and study of wideband single feed circularly polarized microstrip antennas," Progress In Electromagnetics Research, Vol. 80, 45-61, 2008.

5. Kaymaram, F., L. Shafai, and , "Enhancement of microstrip antenna directivity using double-superstrate configurations," Can. J. Elect. Comput. E, Vol. 32, No. 2, 77-82, 2007.
doi:10.1109/CJECE.2007.365503

6. Malekpoor, H. and S. Jam, "Miniaturised asymmetric E-shaped microstrip patch antenna with folded-patch feed," IET Microw. Antennas Propag., Vol. 7, No. 2, 85-91, 2013.
doi:10.1049/iet-map.2012.0266

7. Kasabegoudar, V. G. and K. J. Vinoy, "Broadband suspended microstrip antenna for circular polarization," Progress In Electromagnetics Research, Vol. 90, 353-368, 2009.
doi:10.2528/PIER09012901

8. Johnson, J. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas Propag. Mag., Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

9. Choo, H., A. Hutani, L. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electron. Lett., Vol. 36, No. 25, 2057-2058, 2000.
doi:10.1049/el:20001452

10. Villegas, F., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2424-2435, Sep. 2004.
doi:10.1109/TAP.2004.834071

11. Bayraktar, Z., M. Komurcu, J. Bossard, and D. Werner, "The wind driven optimization technique and its application in electromagnetics," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2745-2757, 2013.
doi:10.1109/TAP.2013.2238654

12. Afshinmanesh, F., A. Marandi, and M. Shahabadi, "Design of a single-feed dual-band dual-polarized printed microstrip antenna using a boolean particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 1845-1852, Jul. 2008.
doi:10.1109/TAP.2008.924684

13. Griths, L., C. Furse, and Y. C. Chung, "Broadband and multiband antenna design using the genetic algorithm to create amorphous shapes using ellipses," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2776-2782, Oct. 2006.
doi:10.1109/TAP.2006.882154

14. Uchida, N., S. Nishiwaki, K. Izui, M. Yoshimura, T. Nomura, and K. Sato, "Simultaneous shape and topology optimization for the design of patch antennas," 3rd European Conference on Antennas and Propagation, 103-107, Mar. 2009.

15. Toivanen, J., R. Makinen, J. Rahola, S. Jarvenpaa, and P. Yla-Oijala, "Gradient-based shape optimisation of ultra-wideband antennas parameterised using splines," IET Microw. Antennas Propag., Vol. 4, No. 9, 1406-1414, 2010.
doi:10.1049/iet-map.2009.0552

16. Noghanian, S. and L. Shafai, "Control of microstrip antenna radiation characteristics by ground plane size and shape," EE Proc. on Microw. Antennas Propag., Vol. 145, No. 3, 207-212, 1998.
doi:10.1049/ip-map:19981819

17. Wong, K.-L., C.-L. Tang, and J.-Y. Chiou, "Broadband probe-fed patch antenna with a W-shaped ground plane," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 827-831, 2002.
doi:10.1109/TAP.2002.1017663

18. El-Deen, E., S. Zainud-Deen, H. Sharshar, and M. A. Binyamin, "The effect of the ground plane shape on the characteristics of rectangular dielectric resonator antennas," IEEE AP-S Int. Symp., 3013-3016, 2006.

19. Best, S., "The significance of ground-plane size and antenna location in establishing the performance of ground-plane-dependent antennas," IEEE Antennas Propag. Mag., Vol. 51, No. 6, 29-43, 2009.
doi:10.1109/MAP.2009.5433095

20. Mandal, K. and P. Sarkar, "High gain wide-band U-shaped patch antennas with modied ground planes," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2279-2282, 2013.
doi:10.1109/TAP.2012.2233455

21. Modiri, A. and K. Kiasaleh, "Efficient design of microstrip antennas for SDR applications using modified PSO algorithm," IEEE Trans. Magn., Vol. 47, 1278-1281, May 2011.
doi:10.1109/TMAG.2010.2087316

22. Cismasu, M. and M. Gustafsson, "Antenna bandwidth optimization by genetic algorithms with single frequency simulation," 7th European Conference on Antennas and Propagation, 2781-2782, Gothenburg, Sweden, Apr. 2013.

23. Sigmund, O., "On the usefulness of non-gradient approaches in topology optimization," Struct. Multidiscip. Optim., Vol. 43, 589-596, 2011.
doi:10.1007/s00158-011-0638-7

24. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

25. Bendse, M. P., O. Sigmund, and , Topology Optimization --- Theory, Methods, and Applications, Springer, 2003.

26. Wadbro, E., "Topology Optimization for Wave Propagation Problems,", Ph.D. Thesis, Division of Scientic Computing, Uppsala University, Uppsala, Sweden, 2009.

27. Jensen, J. and O. Sigmund, "Topology optimization for nano-photonics," Laser Photon. Rev., Vol. 5, No. 2, 308-321, 2011.
doi:10.1002/lpor.201000014

28. Dyck, D. and D. Lowther, "Automated design of magnetic devices by optimizing material distribution," IEEE Trans. Magn., Vol. 32, No. 3, 1188-1193, May 1996.
doi:10.1109/20.497456

29. Kiziltas, G., D. Psychoudakis, J. Volakis, and N. Kikuchi, "Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2732-2743, Oct. 2003.
doi:10.1109/TAP.2003.817539

30. Erentok, A. and O. Sigmund, "Topology optimization of sub-wavelength antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 58-69, Jan. 2011.
doi:10.1109/TAP.2010.2090451

31. Hassan, E., E.Wadbro, and M. Berggren, "Topology optimization of UWB monopole antennas," 7th European Conference on Antennas and Propagation, 1429-1433, Gothenburg, Sweden, Apr. 2013.

32. Nomura, T., M. Ohkado, P. Schmalenberg, J. Lee, O. Ahmed, and M. Bakr, "Topology optimization method for microstrips using boundary condition representation and adjoint analysis," 2013 European Microwave Conference, 632-635, Oct. 2013.

33. Nocedal, J. and S. Wright, Numerical Optimization, Springer, 1999.
doi:10.1007/b98874

34. Gustafsson, M. and S. He, "An optimization approach to two-dimensional time domain electromagnetic inverse problems," Radio Science, Vol. 35, 525-536, Mar. 2000.
doi:10.1029/1999RS900091

35. Chung, Y.-S., C. Cheon, I.-H. Park, and S.-Y.Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis. II. FDTD case," IEEE Trans. Magn., Vol. 37, No. 5, 3255-3259, Sep. 2001.
doi:10.1109/20.952589

36. Bondeson, A., Y. Yang, and P. Weinerfelt, "Shape optimization for radar cross sections by a gradient method," Int. J. Num. Meth. Eng., Vol. 61, No. 5, 687-715, 2004.
doi:10.1002/nme.1088

37. Abenius, E. and B. Strand, "Solving inverse electromagnetic problems using FDTD and gradient-based minimization," Int. J. Num. Meth. Eng., Vol. 68, No. 6, 650-673, 2006.
doi:10.1002/nme.1731

38. Nikolova, N., H. Tam, and M. Bakr, "Sensitivity analysis with the FDTD method on structured grids," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1207-1216, Apr. 2004.
doi:10.1109/TMTT.2004.825710

39. Nomura, T., K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, "Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique," Int. J. Num. Meth. Eng., Vol. 71, 1261-1296, 2007.
doi:10.1002/nme.1974

40. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2005.

41. Gedney, S., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249

42. Svanberg, K., "A class of globally convergent optimization methods based on conservative convex separable approximations," SIAM J. Optim., Vol. 12, No. 2, 555-573, 2002.
doi:10.1137/S1052623499362822

43. Waldschmidt, G. and A. Taflove, "The determination of the e®ective radius of a filamentary source in the FDTD mesh," IEEE Microw. Guided Wave Lett., Vol. 10, No. 6, 217-219, 2000.
doi:10.1109/75.852420