Vol. 61
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-11-18
Three-Dimensional Far-Field Holographic Microwave Imaging: an Experimental Investigation of Dielectric Object
By
Progress In Electromagnetics Research B, Vol. 61, 169-184, 2014
Abstract
This work presents experimental investigations of three-dimensional (3-D) far-field holographic microwave imaging (HMI) method for diagnosing inclusions within dielectric objects, and in particular, it relates to electromagnetic imaging to reconstruct dielectric properties of inhomogeneous, lossy bodies with arbitrary shape. The apparatus is designed for operation at a single frequency of 12.6 GHz. 16 antennas are located on a 2-D array plane which is placed under the object in the far-field region, with air in the space between the antenna array and the object. Experimental results indicate that the 3-D HMI system has the ability to produce a 3-D image of multimedia dielectric object and detect small inclusions embedded within an object. The invention has potential application to tissue imaging.
Citation
Lulu Wang, Ray Simpkin, and Ahmed M. Al-Jumaily, "Three-Dimensional Far-Field Holographic Microwave Imaging: an Experimental Investigation of Dielectric Object," Progress In Electromagnetics Research B, Vol. 61, 169-184, 2014.
doi:10.2528/PIERB14101502
References

1. Manickavasagan, A. and H. Jayasuriya, "Imaging with electromagnetic spectrum," Applications in Food and Agriculture, 108, Springer, Heidelberg, New York, Dordrecht, London, 2014.

2. Jofre, L., M. S. Hawley, A. Broquetas, E. de Los Reyes, M. Ferrando, and A. R. Elias-Fuste, "Medical imaging with a microwave tomographic scanner," IEEE Trans. on Biomedical Engineering, Vol. 37, No. 3, 303-312, 1990.
doi:10.1109/10.52331

3. Mehta, P., K. Chand, D. Narayanswamy, D. G. Beetner, R. Zoughi, and W. V. Stoecker, "Microwave reflectometry as a novel diagnostic tool for detection of skin cancers," IEEE Trans. on Instrumentation and Measurement, Vol. 55, No. 4, 1309-1316, 2006.
doi:10.1109/TIM.2006.876566

4. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570

5. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave Magazine, Vol. 3, No. 1, 48-56, 2002.
doi:10.1109/6668.990683

6. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217

7. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330

8. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. on Biomedical Engineering, Vol. 53, No. 8, 1647-1657, 2005.
doi:10.1109/TBME.2006.878058

9. Davis, S. K., H. Tandradinata, S. C. Hagness, B. D. Van Veen, and , "Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test," IEEE Trans. on Biomedical Engineering, Vol. 52, No. 7, 1237-1250, 2005.
doi:10.1109/TBME.2005.847528

10. Hassan, A. M. and E. L. Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Reviews in Biomedical Engineering, Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780

11. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array — Experimental results," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

12. Klemm, M., J. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010.
doi:10.1109/TAP.2010.2048860

13. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. on Medical Imaging, Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

14. Rubæk, T., O. S. Kim, and P. Meincke, "Computational validation of a 3-D microwave imaging system for breast-cancer screening," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 7, 2105-2115, 2009.
doi:10.1109/TAP.2009.2021879

15. Fear, E. C., "Microwave imaging of the breast," Technology in Cancer Research & Treatment, Vol. 4, No. 1, 69-82, 2005.
doi:10.1177/153303460500400110

16. Tipa, R. and O. Baltag, "Microwave thermography for cancer detection," Romanian Journal of Physics, Vol. 51, No. 2-4, 371, 2006.

17. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, P. M. di Florio-Alexander, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Trans. on Medical Imaging, Vol. 31, No. 8, 1584-1592, 2012.
doi:10.1109/TMI.2012.2197218

18. Smith, D., M. Leach, M. Elsdon, and S. J. Foti, "Indirect holographic techniques for determining antenna radiation characteristics and imaging aperture fields," IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, 54-67, 2007.
doi:10.1109/MAP.2007.370982

19. Jayanthy, M., N. Selvanathan, M. Abu-Bakar, D. Smith, H. M. Elgabroun, P. M. Yeong, and S. S. Kumar, "Microwave holographic imaging technique for tumour detection," 3rd Kuala Lumpur International Conference on Biomedical Engineering, 275-277, 2006.

20. Ravan, M., R. K. Amineh, and N. K. Nikolova, "Two-dimensional near-field microwave holography," Inverse Problems, Vol. 26, No. 5, 055011, 2010.
doi:10.1088/0266-5611/26/5/055011

21. Amineh, R. K., M. Ravan, A. Khalatpour, and N. K. Nikolova, "Three-dimensional near-field microwave holography using reflected and transmitted signals," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 12, 4777-4789, 2011.
doi:10.1109/TAP.2011.2165496

22. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

23. Farhat, N. H., "Microwave holography and coherent tomography," Medical Applications of Microwave Imaging, 66-81, 1986.

24. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1984.

25. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 547, 1994.
doi:10.1118/1.597312

26. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, No. 11, 2231, 1991.
doi:10.1088/0031-9155/41/11/001

27. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251, 1999.
doi:10.1088/0031-9155/41/11/002

28. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 2637, 2007.
doi:10.1088/0031-9155/52/10/001

29. Abbosh, A., "Early breast cancer detection using hybrid imaging modality," Antennas and Propagation Society International Symposium, 1-4, 2009.

30. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Holographic microwave imaging array for brain stroke detection," Journal of Signal and Information Processing, Vol. 4, No. 3B, 96-101, 2013.
doi:10.4236/jsip.2013.43B017

31. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging for medical applications," Journal of Biomedical Science and Engineering, Vol. 6, 823-833, 2013.
doi:10.4236/jbise.2013.68100

32. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging array for early breast cancer detection," 2012 ASME International Mechanical Engineering Congress and Exposition, 45-51, 2012.
doi:10.1115/IMECE2012-85910

33. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "3D breast cancer imaging using holographic microwave interferometry," Proceedings of the 27th Conference on Image and Vision Computing, 180-185, ACM, New Zealand, 2012.

34. Wang, L., R. Simpkin, and A.M. Al-Jumaily, "Holographic microwave imaging array: Experimental investigation of breast tumour detection," 2013 IEEE International Workshop on Electromagnetics (iWEM), 61-64, 2013.

35. Wang, L., R. Simpkin, and A.M. Al-Jumaily, "Open-ended waveguide antenna for microwave breast cancer detection," 2013 IEEE International Workshop on Electromagnetics (iWEM), 65-68, 2013.

36. Wang, L., "Holographic microwave imaging for lesion detection,", Doctoral Dissertation, Auckland University of Technology, 2013.

37. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Imaging of 3-D dielectric objects using far-field holographic microwave imaging technique," Progress In Electromagnetics Research B, 2014.

38. Levanda, R. and A. Leshem, "Synthetic aperture radio telescopes," IEEE Signal Processing Magazine, Vol. 27, No. 1, 14-29, 2010.
doi:10.1109/MSP.2009.934719

39. Simonov, N., S. I. Jeon, S. H. Son, J. M. Lee, and H. J. Kim, "3D microwave breast imaging based on multistatic radar concept system," Journal of the Korean Institute of Electromagnetic Engineering and Science, Vol. 12, No. 1, 107-114, 2012.
doi:10.5515/JKIEES.2012.12.1.107