Vol. 65
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-01-05
Miniaturized Slotted Ground UWB Antenna Loaded with Metamaterial for WLAN and WiMAX Applications
By
Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016
Abstract
This paper presents a miniaturized ultra wideband (UWB) antenna with metamaterial for WLAN and WiMax applications. For miniaturization of UWB antenna resonating 3.1-10.6 is designed Ghz using fractalization of the radiating edge and slotted ground structure approach. A miniaturization of active patch area and antenna volume is achieved up to 63.48% and 42.24% respectively, with respect to the conventional monopole UWB antenna. This antenna achieves a 143% impedance bandwidth covering the frequency band from 2.54 GHz to 15.36 GHz under simulation and 132% (2.95-14.28 GHz) in measurement. The electrical dimension of this antenna is 0.32  × 0.32  (38mm × 38mm) at lower frequency of 2.54 GHz. As per IEEE 802.11a/b/g and IEEE 802.16e standards, WLAN (2.4 -2.5 GHz, 5.150 -5.250 GHz, 5.725 -5.825 GHz), WiMAX (3.3-3.8 GHz) bands are achieved by using slotted ground structure and metamaterial rectangular split ring resonator. The proposed antenna is fabricated on FR4 substrate of thickness 1.6 mm and a dielectric constant 4.3 and tested. The proposed antenna yields a −10 dB impedance bandwidth of about 11.1% (2.39-2.67 GHz), 59.1% (2.87-5.28 GHz) and 7.4% (5.58-6.01 GHz) under simulation and 4.5% (2.41-2.52 GHz), 51.1% (3.12-5.26 GHz) and 3.8% (5.69-5.91 GHz) in measurement for 2.4, 3.5 & 5 and 5.8 GHz bands respectively. Stable radiation patterns with low cross polarization, high average antenna gain of 3.02 dBi under simulation and 2.14 dBi in measurement and measured peak average radiation efficiency of 76.6% are observed for the operating bands. Experimental results seem in good agreement with the simulated ones of the proposed antenna.
Citation
Ritesh Kumar Saraswat, and Mithilesh Kumar, "Miniaturized Slotted Ground UWB Antenna Loaded with Metamaterial for WLAN and WiMAX Applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703
References

1. Chakraborty, M., B. Rana, P. Sarkar, and A. Das, "Size reduction of microstrip antenna with slots and defected ground structure," International Journal of Electronics Engineering, Vol. 4, No. 1, 61-64, 2012.

2. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302

3. Elftouh, H., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
doi:10.2528/PIERL15031003

4. Mahatthanajatuphat, C., S. Saleekaw, and P. Akkaraekthalin, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

5. Shrestha, S., S. R. Lee, and D.-Y. Choi, "New fractal-based miniaturized dual band patch antenna for rf energy harvesting," International Journal of Antennas and Propagation, Vol. 2014, 2014.

6. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888

7. Suganthi, S., S. Raghavan, and D. Kumar, "Miniature fractal antenna design and simulation for wireless applications," IEEE RAICS, 57-61, 2011.

8. Liua, W.-C., C.-M. Wua, and N.-C. Chu, "A compact low profile dual-band antenna for WLAN and WAVE applications," AEU Int. J. Electron. C, Vol. 66, 467-471, 2012.
doi:10.1016/j.aeue.2011.10.009

9. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable uwb antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103

10. Kumar, M., A. Basu, and S. K. Koul, "UWB printed slot antenna with improved performance in time and frequency domains," Progress In Electromagnetics Research C, Vol. 18, 197-210, 2011.
doi:10.2528/PIERC10090904

11. Kumar, M., A. Basu, and S. K. Koul, "Circuits and active antennas for ultrawideband pulse generation and transmission," Progress In Electromagnetics Research B, Vol. 23, 251-272, 2010.
doi:10.2528/PIERB10052103

12. Su, S.-W., "Compact four loop antenna system for concurrent, 2.4 and 5 GHz WLAN operation," Microw. Opt. Technol. Lett., Vol. 56, No. 1, 208-215, 2014.
doi:10.1002/mop.28020

13. Chien, H. Y., C. Y. D. Sim, and C. H. Lee, "Dual band meander monopole antenna for WLAN operation in laptop computer," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 694-697, 2013.
doi:10.1109/LAWP.2013.2263373

14. Huang, C.-Y. and E.-Z. Yu, "A slot monopole antenna for dual band WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 500-502, 2011.
doi:10.1109/LAWP.2011.2156755

15. Ghatak, R., R. K. Mishra, and D. R. Poddar, "Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 742-745, 2008.
doi:10.1109/LAWP.2008.2004815

16. Xu, Y., Y.-C. Jiao, and Y.-C. Luan, "Compact CPW-fed printed monopole antenna with triple band characteristics for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 24, 1519-1520, 2012.
doi:10.1049/el.2012.3255

17. Sim, C. Y. D., H. D. Chen, K. C. Chiu, and C. H. Chao, "Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications," IET Microw. Antenna Propag., Vol. 6, No. 14, 1529-1535, 2012.
doi:10.1049/iet-map.2012.0174

18. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, No. 10, 636-638, 2013.
doi:10.1049/el.2013.0357

19. Zhang, X.-Q., Y.-C. Jiao, and W.-H. Wang, "Compact wide tri-band slotantenna for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 2, 64-65, 2012.
doi:10.1049/el.2011.3376

20. Li, X., X.-W. Shi, W. Hu, P. Fei, and J.-F. Yu, "Compact triband ACS fed monopole antenna employing open ended slots for wireless communication," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 388-391, 2013.
doi:10.1109/LAWP.2013.2252414

21. Liu, P., Y. Zou, B. Xie, X. Liu, and B. Sun, "Compact CPW fed tri band printed antenna with meandering split ring slot for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1242-1244, 2012.

22. Xu, H.-X., G.-M.Wang, J.-G. Liang, M.-Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3442-3450, 2013.
doi:10.1109/TAP.2013.2255855

23. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

24. Xu, H.-X., G.-M.Wang, M.-Q. Qi, C.-X Zhang., J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298

25. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

26. Basaran, S. C. and Y. E. Erdemli, "A dual band split ring monopole antenna for WLAN applications," Microw. Opt. Technol. Lett., Vol. 51, No. 11, 2685-2688, 2009.
doi:10.1002/mop.24708

27. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

28. Xiong, J., H. Li, Y. Jin, and S. He, "Modified TM020 mode of a rectangular patch antenna partially loaded with metamaterial for dual band applications," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1006-1009, 2009.
doi:10.1109/LAWP.2009.2030771

29. Zhu, J. and G. V. Eleftheriades, "Dual band metamaterial inspired small monopole antenna for WiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009.
doi:10.1049/el.2009.2107

30. Computer Simulation Technology - CST(Microwave Studio MWS) Version-2014.
doi:10.1049/el.2009.2107

31. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-9, 2002.

32. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944

33. Saha, C. and J. Y. Siddiqui, "Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators," Int. J. RF Microw. Comput. Aided Eng., Vol. 21, 432-438, 2011.
doi:10.1002/mmce.20533

34. Ray, K. P. and G. Kumar, "Determination of resonant frequency of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 23, 114-117, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G

35. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902