Vol. 66
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-05-03
Strain and Dispersion Dependence of High Frequency Electromagnetic Properties of Carbon Nanotube/Epoxy Nanocomposites
By
Progress In Electromagnetics Research B, Vol. 66, 157-169, 2016
Abstract
An experimental setup and data reduction method has been developed for noninvasive high frequency electromagnetic impedance measurements of carbon nanotube (CNT)/epoxy nanocomposites. Using time domain reflectometry and parallel plate transmission lines, dielectric properties can be measured with the specimen under tensile loading. Good dispersion and addition of CNTs lead to an increase in high frequency dielectric constant of the nanocomposites. A strong strain dependence of the impedance is observed for the well dispersed nanocomposite while the baseline epoxy showed no strain dependence. A mechanism, based on an increase in CNT-CNT tunneling capacitance with applied tensile strain has been suggested. This research is expected to introduce a noninvasive characterization technique for studying electromagnetic properties of conductive nanocomposites.
Citation
Gaurav Pandey, "Strain and Dispersion Dependence of High Frequency Electromagnetic Properties of Carbon Nanotube/Epoxy Nanocomposites," Progress In Electromagnetics Research B, Vol. 66, 157-169, 2016.
doi:10.2528/PIERB16012009
References

1. Mathur, R. B., S. Pande, B. P. Singh, and T. L. Dhami, "Electrical and mechanical properties of multiwalled carbon nanotubes reinforced PMMA and PS composites," Polymer Composites, Vol. 29, No. 7, 717-727, 2008.
doi:10.1002/pc.20449

2. Kim, H. M., K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, "Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing fe catalyst," Appl. Phys. Lett., Vol. 84, No. 4, 589-591, 2004.
doi:10.1063/1.1641167

3. Arjmand, M., M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, "Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate," Carbon, Vol. 49, No. 11, 3430-3440, September 2011.
doi:10.1016/j.carbon.2011.04.039

4. Thostenson, E. T. and T. Chou, "Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites RID B-8587-2008," Carbon, Vol. 44, No. 13, 3022-3029, November 2006.

5. Mierczynska, A., M. Mayne-L'Hermite, G. Boiteux, and J. K. Jeszka, "Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method," J. Appl. Polym. Sci., Vol. 105, No. 1, 158-168, July 5, 2007.
doi:10.1002/app.26044

6. Ayatollahi, M. R., S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, "Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites," Polym. Test., Vol. 30, No. 5, 548-556, August 2011.
doi:10.1016/j.polymertesting.2011.04.008

7. Lee, S. H., M. W. Kim, S. H. Kim, and J. R. Youn, "Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips," European Polymer Journal, Vol. 44, No. 6, 1620-1630, June 2008.
doi:10.1016/j.eurpolymj.2008.03.017

8. Bauhofer, W. and J. Z. Kovacs, "A review and analysis of electrical percolation in carbon nanotube polymer composites," Composites Sci. Technol., Vol. 69, No. 10, 1486-1498, 2009.
doi:10.1016/j.compscitech.2008.06.018

9. Li, C., E. T. Thostenson, and T. Chou, "Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites RID C-8998-2011 RID B-8587-2008," Appl. Phys. Lett., Vol. 91, No. 22, 223114, November 26, 2007.
doi:10.1063/1.2819690

10. Rutherglen, C. and P. Burke, "Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes," Small, Vol. 5, No. 8, 884-906, 2009.
doi:10.1002/smll.200800527

11. Smolyansky, D. and S. Corey, "PCB interconnect characterization from TDR measurements," Electronic Engineering, Vol. 71, No. 870, 63, July 1999.

12. O'Connor, K. M. and C. M. Dowding, Geomeasurements by Pulsing TDR Cables and Probes, 402, CRC Press, Boca Raton, 1999.

13. Lin, M. and J. Thaduri, Structural Damage Detection Using an Embedded ETDR Distributed Strain Sensor, 315, Springer, New York, 2005.

14. Chen, G., H. Mu, D. Pommerenke, and J. L. Drewniak, "Damage detection of reinforced concrete beams with novel distributed Crack/Strain sensors," Structural Health Monitoring, Vol. 3, No. 3, 225-243, September 1, 2004.
doi:10.1177/1475921704045625

15. Dominauskas, A., D. Heider, J. W., Gillespie, and Jr., "Electric time-domain reflectometry distributed flow sensor," Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 1, 138, 2007.
doi:10.1016/j.compositesa.2006.01.019

16. Obaid, A. A., S. Yarlagadda, M. K. Yoon, N. E. Hager, and R. C. Domszy, "A time-domain reflectometry method for automated measurement of crack propagation in composites during mode I DCB testing," Journal of Composite Materials, Vol. 40, No. 22, 2047-2066, November.
doi:10.1177/0021998306061309

17. Pandey, G., M. Wolters, E T. Thostenson, and D. Heider, "Localized functionally modified glass fibers with carbon nanotube networks for crack sensing in composites using time domain reflectometry," Carbon, Vol. 50, No. 10, 3816-3825, 2012.
doi:10.1016/j.carbon.2012.04.008

18. Ahir, S. and E. Terentjev, "Photomechanical actuation in polymer-nanotube composites," Nature Materials, Vol. 4, No. 6, 491-495, June 2005.
doi:10.1038/nmat1391

19. Ahir, S., A. Squires, A. Tajbakhsh, and E. Terentjev, "Infrared actuation in aligned polymer-nanotube composites RID B-7623-2011," Physical Review B, Vol. 73, No. 8, 085420, February 2006.
doi:10.1103/PhysRevB.73.085420

20. Koerner, H., G. Price, N. Pearce, M. Alexander, and R. Vaia, "Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers," Nature Materials, Vol. 3, No. 2, 115-120, February 2004.
doi:10.1038/nmat1059

21. Rochefort, A., P. Avouris, F. Lesage, and D. Salahub, "Electrical and mechanical properties of distorted carbon nanotubes RID A-5124-2010," Physical Review B, Vol. 60, No. 19, 13824-19330, November 15, 1999.
doi:10.1103/PhysRevB.60.13824

22. Kenneth, J. L., J. Kim, J. P. Lynch, N. Wong, S. Kam, and A. K. Nicholas, "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing," Smart Mater. Struct., Vol. 16, No. 2, 429, 2007.
doi:10.1088/0964-1726/16/2/022

23. Park, M., H. Kim, and J. P. Youngblood, "Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films," Nanotechnology, Vol. 19, No. 5, 055705, 2008.
doi:10.1088/0957-4484/19/05/055705

24. Pham, G. T., Y. Park, Z. Liang, C. Zhang, and B. WangPham, G. T., Y. Park, Z. Liang, C. Zhang, B. Wang, "Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing," Composites Part B: Engineering, Vol. 39, No. v, 209-216, 2008.
doi:10.1016/j.compositesb.2007.02.024

25. Anandand, S. V. and D. R. Mahapatra, "Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films," Smart Mater. Struct., Vol. 18, No. 4, 045013, 2009.
doi:10.1088/0964-1726/18/4/045013

26. Hu, N., Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, "Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor," Carbon, Vol. 48, No. 3, 680-687, 2010.
doi:10.1016/j.carbon.2009.10.012

27. Srivastava, R. K., V. S. M. Vemuru, Y. Zeng, R. Vajtai, S. Nagarajaiah, P. M. Ajayan, and A. Srivastava, "The strain sensing and thermal-mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films," Carbon, Vol. 49, No. 12, 3928-3936, October 2011.
doi:10.1016/j.carbon.2011.05.031

28. Fellner-Feldegg, H., "Measurement of dielectrics in the time domain," J. Phys. Chem., Vol. 73, No. 3, 616-623, 1969.
doi:10.1021/j100723a023

29. Castiglione, P. and P. J. Shouse, "The effect of ohmic cable losses on time-domain re°ectometry measurements of electrical conductivity," Soil Science Society of America Journal, Vol. 67, No. 2, March 2003.
doi:10.2136/sssaj2003.4140

30. Robinson, D. A. and S. P. Friedman, Parallel Plates Compared with Conventional Rods as TDR Waveguides for Sensing Soil Moisture, 497, Springer, Netherlands, 2000.

31. Faria, J. A. B., Electromagnetic Foundations of Electrical Engineering, 399, Wiley, Chichester, U.K., 2008.
doi:10.1002/9780470697498

32. Schlaeger, S., "A fast TDR-inversion technique for the reconstruction of spatial soil moisture content," Hydrol. Earth Syst. Sci., Vol. 9, No. 5, 481-492, 2005.
doi:10.5194/hess-9-481-2005

33. Platt, I. G. and I. M. Woodhead, "A 1D inversion for non-invasive time domain reflectometry," Meas. Sci. Technol., Vol. 19, No. 5, 055708, May 2008.
doi:10.1088/0957-0233/19/5/055708

34. Hsue, C.-W. and T.-W. Pan, "Reconstruction of nonuniform transmission lines from timedomain reflectometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 32-38, 1997.
doi:10.1109/22.552029

35. Banninger, D., H. Wunderli, M. Nussberger, and H. Fluhler, "Inversion of TDR signals revisited," Journal of Plant Nutrition and Soil Science, Vol. 171, No. 2, 137-145, 2008.
doi:10.1002/jpln.200700179

36. Christopoulos, C., The Transmission-line Modeling Method: TLM, Oxford University Press, Institute of Electrical and Electronics Engineers, Oxford, New York, 1995.
doi:10.1109/9780470546659

37. Thostenson, E. T., S. Ziaee, and T. Chou, "Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites," Composites Sci. Technol., Vol. 69, No. 6, 801-804, May 2009.
doi:10.1016/j.compscitech.2008.06.023

38. Dang, Z., S. Yao, and H. Xu, "Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites," Applied Physics Letters, Vol. 90, No. 1, 012907-012907-3, 2007.
doi:10.1063/1.2430633

39. Lee, H. Y. and Y. M. Shkel, "Dielectric response of solids for contactless detection of stresses and strains," Sensors and Actuators A: Physical, Vol. 137, No. 2, 287, 2007.
doi:10.1016/j.sna.2007.03.029

40. Lee, H. Y., Y. Peng, and Y. M. Shkel, Strain-dielectric response of dielectrics as foundation for electrostriction stresses, American Institute of Physics, 2005.

41. Lan, C., P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu, and R. G. Reifenberger, "Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation," Nanotechnology, Vol. 19, No. 12, 125703, 2008.
doi:10.1088/0957-4484/19/12/125703

42. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electron. Agric., Vol. 31, No. 3, 213-237, 2001.
doi:10.1016/S0168-1699(00)00184-8