Vol. 69
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-09-14
Analytical Investigation into the S-Parameters of Metamaterial Layers
By
Progress In Electromagnetics Research B, Vol. 69, 87-101, 2016
Abstract
Making use of mode matching method, a theoretical analysis of a metamaterial layer is presented. The unit cell of the structure is modeled by a TEM waveguide, and the metamaterial element is supposed as a discontinuity in the waveguide. Analyzing the structure using this model, mathematical relations between s-parameters of a metasurface are extracted. It is evident that the variation of each s-parameter is limited to an arc of circle on Smith chart. The key factors determining the location of each circle on plane are specified. Moreover, a discussion on the role of metasurface element in the determination of s-parameters of the structure is given. The variations of scattering transfer parameters on the plane are determined, too. The steps needed to derive these relations are described. Using these relations, simple and straightforward formulas are devised which can be used to predict the response of the metasurface. Finally, some metasurfaces will be analyzed by full-wave method. The new relations are well-agreed with simulation results.
Citation
Mohsen Kalantari Meybodi, and Kian Paran, "Analytical Investigation into the S-Parameters of Metamaterial Layers," Progress In Electromagnetics Research B, Vol. 69, 87-101, 2016.
doi:10.2528/PIERB16070806
References

1. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2011.
doi:10.1016/j.metmat.2007.02.003

2. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

3. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, No. 1, OP98-OP120, 2012.

4. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288

5. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 2011.

6. Campione, S., M. Albani, and F. Capolino, "Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: Loss compensation using gain," Optical Materials Express, Vol. 1, No. 6, 1077-1089, 2011.
doi:10.1364/OME.1.001077

7. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, No. 6130, 286-287, 2013.
doi:10.1126/science.1235589

8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

9. Itoh, T., "Invited paper: Prospects for metamaterials," Electronics Letters, Vol. 40, No. 16, 972-973, 2004.
doi:10.1049/el:20046267

10. Caloz, C. and T. Itoh, "Metamaterials for high-frequency electronics," Proceedings of the IEEE, Vol. 93, No. 10, 1744-1752, 2005.
doi:10.1109/JPROC.2005.853540

11. Shestopalov, V. P., "Spectral theory and excitation of open structures," IET, No. 42, 1996.

12. Kuester, E. F., M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2641-2651, 2003.
doi:10.1109/TAP.2003.817560

13. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 853-865, 2005.
doi:10.1109/TEMC.2005.853719

14. Marcuvitz, N., Waveguide Handbook, Peregrinus, Institution of Electrical Engineers, London, 1951.

15. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Physics, Vol. 7, No. 1, 37-55, 1967.
doi:10.1016/0020-0891(67)90028-0

16. Marques, R., F. Mesa, L. Jelinek, and F. Medina, "Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes," Opt. Express, Vol. 17, 5571-5579, 2009.
doi:10.1364/OE.17.005571

17. Bilotti, F. and L. Sevgi, "Metamaterials: Definitions, properties, applications, and FDTD based modeling and simulation," International Journal of RF and Microwave Computer Aided Engineering, Vol. 22, No. 4, 422-438, 2012.
doi:10.1002/mmce.20634

18. Huang, R., Z.-W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902

19. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

20. Hsu, C. C., K. H. Lin, and H. L. Su, "Implementation of broadband isolator using metamaterialinspired resonators and a T-shaped branch for MIMO antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3936-3939, 2011.
doi:10.1109/TAP.2011.2163741

21. Beruete, M., I. Campillo, M. Navarro-Cia, F. Falcone, and M. Sorolla Ayza, "Molding left- or righthanded metamaterials by stacked cutoff metallic hole arrays," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1514-1521, 2007.
doi:10.1109/TAP.2007.897324

22. Itoh, T., "Numerical Techniques for Microwave and Millimeter-wave Passive Structures," Wiley, Science, 1980.

23. Pozar, D. M., Microwave Engineering, Wiely, 2012.

24. Collin, R. E., Field Theory of Guided Waves, Wiely, 1990.
doi:10.1109/9780470544648

25. Guglielmi, M., G. Gheri, M. Calamia, and G. Pelosi, "Rigorous multimode network numerical representation of inductive step," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 317-326, 1994.
doi:10.1109/22.275263

26. Widarta, A., S. Kuwano, and K. Kokubun, "Simple and accurate solutions of the scattering coefficients of E-plane junctions in rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, 2716-2718, 1995.
doi:10.1109/22.477852

27. Wexler, A., "Solution of waveguide discontinuities by modal analysis," Journal Title Abbreviation, Vol. 15, No. 9, 508-517, 1967.

28. Mesa, F., R. Rodriguez-Berral, M. Garcia-Vigueras, F. Medina, and J. R. Mosig, "Simplified modal expansion to analyze frequency-selective surfaces: An equivalent circuit approach," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1106-1111, 2016.
doi:10.1109/TAP.2015.2513423

29. Campione, S., F. Mesa, and F. Capolino, "Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3554-3563, 2013.
doi:10.1109/TAP.2013.2258395

30. Gonzalez, G., , Microwave Transistor Ampli ers: Analysis and Design, Prentice Hall, 1997.

31. Conciauro, G., M. Guglielmi, and R. Sorrentino, "Advanced Modal Analysis: CAD Techniques for Waveguide Components and Filters," John Wiley & Sons Inc., 2000.

32. Stamatopoulos, I. D. and I. D. Robertson, "Rigorous network representation of microwave components by the use of indirect mode matching," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 935-944, 2004.
doi:10.1109/TMTT.2004.823597

33. Ade, P. A., G. Pisano, C. Tucker, and S. Weaver, "A review of metal mesh filters," Proceedings of SPIE, Vol. 6275, 62750U-62750U, 2006.
doi:10.1117/12.673162