Vol. 78
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-08-22
Design of Multilayer Microwave Absorbers Using Hybrid Binary Lightning Search Algorithm and Simulated Annealing
By
Progress In Electromagnetics Research B, Vol. 78, 75-90, 2017
Abstract
In this paper, a hybrid algorithm of binary lightning search algorithm and simulated annealing (BLSA-SA) is proposed to optimize the design of multilayer microwave absorbers for normal incidence. The multilayer absorber is designed to find a set of coatings that minimize the reflection coefficient over the desired frequency. The design problem is translated into solving the binary problem. Three different design examples are presented to verify the performance of the BLSA-SA. The results show that the reflection coefficient and thickness of BLSA-SA are better than those of other heuristic algorithms for multilayer absorber design. In the five-layer design, the standard deviation of BLSA-SA is the smallest among the 20 independent test results of the algorithms, which indicates that the BLSA-SA algorithm, has a strong stability.
Citation
Yuting Lu, and Yongquan Zhou, "Design of Multilayer Microwave Absorbers Using Hybrid Binary Lightning Search Algorithm and Simulated Annealing," Progress In Electromagnetics Research B, Vol. 78, 75-90, 2017.
doi:10.2528/PIERB17060302
References

1. Weile, D. S., E. Michielssen, and D. E. Goldberg, "Genetic algorithm design of Pareto optimal broadband microwave absorbers," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 518, 1996.
doi:10.1109/15.536085

2. Jiang, L., J. Cui, L. Shi, and X. Li, "Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms," IET Microw. Antennas Propag., Vol. 3, 572, 2009.
doi:10.1049/iet-map.2008.0059

3. Michielssen, E., J. M. Sajer, S. Ranjithant, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6/7, 1024, 1993.
doi:10.1109/22.238519

4. Cui, S. and D. S. Weile, "Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorber," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3616, 2005.
doi:10.1109/TAP.2005.858866

5. Goudos, S. K. and J. N. Sahalos, "Microwave absorber optimal design using multi-objective particle swarm optimization," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1553, 2006.
doi:10.1002/mop.21727

6. Amaya, I. and R. Correa, "Optimal design of multilayer EMAs for frequencies between 0.85 GHz and 5.4 GHz," Revista de Ingenieria, Vol. 38, 33, 2013.

7. Goudos, S. K., "Design of microwave broadband absorbers using a self-adaptive differential evolution algorithm," Int. J. RF and Microwave CAE, Vol. 19, 364, 2009.
doi:10.1002/mmce.20357

8. Dib, N., M. Asi, and A. Sabbah, "On the optimal design of multilayer microwave absorbers," Progress In Electromagnetics Research C, Vol. 13, 171, 2010.
doi:10.2528/PIERC10041310

9. Asi, M. J. and N. I. Dib, "Design of multilayer microwave broadband absorbers using central force optimization," Progress In Electromagnetics Research B, Vol. 26, 101, 2010.
doi:10.2528/PIERB10090103

10. Islam, M. M., H. Shareef, A. Mohamed, and A. Wahyudie, "A binary variant of lightning search algorithm: BLSA," Soft Comput., Vol. 21, 2971, 2017.
doi:10.1007/s00500-016-2171-5

11. Shareef, H., A. A. Ibrahim, and A. H. Mutlag, "Lightning search algorithm," Appl. Soft Comput., Vol. 36, 315, 2015.
doi:10.1016/j.asoc.2015.07.028

12. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, 671, 1983.
doi:10.1126/science.220.4598.671

13. Najim, M., P. Smitha, V. Agarwala, and D. Singh, "Design of light weight multi-layered coating of zinc oxide-iron-graphite nano-composites for ultra-wide bandwidth microwave absorption," J. Mater. Sci., Mater. Elect., Vol. 26, 7367, 2015.
doi:10.1007/s10854-015-3366-8

14. Du, M., Z. J. Yao, J. T. Zhou, P. J. Liu, T. T. Yao, and R. Yao, "Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite," Synthetic Metals, Vol. 223, 49, 2017.
doi:10.1016/j.synthmet.2016.11.039

15. Bronwel, A., "Transmission-line analogies of plane electromagnetic-wave reflections," Proceedings of the I.R.E., Vol. 32, 233, 1944.
doi:10.1109/JRPROC.1944.230657

16. Ahmed, M. S., A. Mohamed, R. Z. Homod, and H. Shareef, "Hybrid LSA-ANN based home energy management scheduling controller for residential demand response strategy," Energies, 2016.

17. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, "Equation of state calculations by fast computing machines," J. Chem. Phys., Vol. 21, No. 6, 1087, 1953.
doi:10.1063/1.1699114

18. Rashedi, E., H. Nezamabadi-Pour, and S. Saryazdi, "GSA: A gravitational search algorithm," Information Sciences, Vol. 179, 2232, 2009.
doi:10.1016/j.ins.2009.03.004

19. Formato, R. A., "Central force optimization: A new metaheuristic with applications in applied electromagnetics," Progress In Electromagnetics Research, Vol. 77, 425, 2007.
doi:10.2528/PIER07082403

20. Chamaani, S., S. A. Mirtaheri, and M. A. Shooredeli, "Design of very thin wide band absorbers using modified local best particle swarm optimization," Int. J. Electron. Commun. (AEU), Vol. 62, 549, 2008.
doi:10.1016/j.aeue.2007.06.001