Vol. 13
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-05-14
High Impedance Surfaces Based Antennas for High Data Rate Communications at 40 GHz
By
Progress In Electromagnetics Research C, Vol. 13, 217-229, 2010
Abstract
Millimeter wave High Impedance Surfaces (HIS) based antennas are designed, fabricated, and characterized for high data rate communications at frequencies around 40 GHz. HIS with different finite surface area sizes are used as a ground plane for the microstrip patch antennas to suppress the surface waves. The antenna measurements and full wave electromagnetic simulations demonstrate a wide bandwidth of 12-15% in the frequency range of 38-44 GHz with a high gain of ~6 dB and a very low cross polar contribution better than -20 dB.
Citation
Cuong-Manh Tran, Habiba Hafdallah-Ouslimani, Luyang Zhou, Alain C. Priou, Herve Teillet, Jean-Yves Daden, and Abdelwaheb Ourir, "High Impedance Surfaces Based Antennas for High Data Rate Communications at 40 GHz ," Progress In Electromagnetics Research C, Vol. 13, 217-229, 2010.
doi:10.2528/PIERC10040404
References

1. Costanzo, S., I. Venneri, G. Di Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, Vol. 83, 173-183, 2008.
doi:10.2528/PIER08051404

2. Cui, B., J. Zhang, and X. W. Sun, "Single layer micro-strip antenna arrays applied in millimeter-wave radar," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 3-15, 2008.
doi:10.1163/156939308783122797

3. Ren, Y.-J. and K. Chang, "An ultrawideband microstrip dual ring antenna for millimeter-wave applications," IEEE Antennas and Wireless Propagat. Letters, Vol. 6, 457-459, 2007.
doi:10.1109/LAWP.2007.905012

4. Yang, G.-M., R. Jin, J. Geng, and W. He, "Planar broadband millimeter-wave antenna based on open loop ring resonators," Microwave and Optical Technology Letters, Vol. 50, No. 2, 324-328, 2008.
doi:10.1002/mop.23081

5. Navarro, J., "Wide-band, low-profile millimeter-wave antenna array," Microwave and Optical Technology Letters, Vol. 34, No. 4, 253-255, 2002.
doi:10.1002/mop.10430

6. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, August 1993.
doi:10.1109/8.244643

7. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008.
doi:10.2528/PIER08092403

8. Sievenpiper, D., High impedance electromagnetic surfaces, Ph.D. Thesis, UCLA, 1999.

9. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "Artificial Magnetic conductor Surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

10. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microwave and Optical Technology Letters, Vol. 50, No. 8, 2170-2167, 2008.
doi:10.1002/mop.23598

11. Mahdi Moghadasi, S., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

12. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

13. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

14. Maslovski, S., P. Ikonen, C. Simovski, M. Karkkainen, S. Tretyakov, and V. Denchev, Improving antenna near-field pattern by use of artificial impedance screens, physics/0504123, 2005.

15. Wu, Z.-H. and W. X. Zhang, "On profile thickness of printed compound air-fed array antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, 199-207, 2010.
doi:10.1163/156939310790735688

16. Sohn, J. R., K. Y. Kim, H.-S. Tae, and J. -H. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna ," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

17. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2939-2949, 2003.

18. Tretyakov, S. A. and C. R. Simovski, "Wire antennas near artificial impedance surfaces," Microwave and Optical Technology Letters, Vol. 27, No. 1, 46-50, 2000.
doi:10.1002/1098-2760(20001005)27:1<46::AID-MOP13>3.0.CO;2-9