Vol. 17
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-08
Wideband on-Chip k -Band RF Front-End for Vehicular FMCW Radar Applications in 0.18 μm CMOS Process
By
Progress In Electromagnetics Research C, Vol. 17, 145-162, 2010
Abstract
In this paper, we present a wideband on-chip K-band RF front-end including a transmitter and a receiver for vehicular FMCW radar applications using a 0.18 μm CMOS process. To achieve wideband performance, an RC feedback circuit is applied to the input stage of amplifiers, as well as wideband passive circuits such as Marchand type baluns and Wilkinson type power dividers to the mixer LO port and transmitter output, respectively. The designed chip shows a 3-dB bandwidth of 6 GHz and 4.8 GHz for the receiver and transmitter, respectively. The receiver represents a gain of 18 dB and an input-referred 1 dB compression point of -9 dBm at an RF frequency of 24.15 GHz and an IF frequency of 100 kHz. The transmitter shows a power gain of 8.9 dB and an output power of 6.8 dBm at a frequency of 24.15 GHz. The total chip has a size of 1500 μm x 1270 μm while consuming 71 mA with a supply voltage of 1.8 V. Further, the designed RF front-end chip, also, has been verified by radar performance tests such as the Doppler shift and range detection. The test result for range information shows good agreement with theoretical expectation.
Citation
Han-Yeol Yu, Sung-Sun Choi, and Yong-Hoon Kim, "Wideband on-Chip k -Band RF Front-End for Vehicular FMCW Radar Applications in 0.18 μm CMOS Process," Progress In Electromagnetics Research C, Vol. 17, 145-162, 2010.
doi:10.2528/PIERC10092203
References

1. Gresham, I., A. Jenkins, R. Egri, C. Eswarappa, N. Kinayman, N. Jain, R. Anderson, F. Kolak, R. Wohlert, S. P. Bawell, J. Bennett, and J. Lanteri, "Ultra-wideband radar sensors for short-range vehicular applications," IEEE. Trans. Microw. Theory Tech., Vol. 52, No. 9, 2105-2122, 2004.
doi:10.1109/TMTT.2004.834185

2. FCC, , First report and order, revision of part 15 of the commission's rules regarding ultra wideband transmission systems, FCC, 153, Washington, DC, ET Docket 98, 2002.

3. ETSI TR 101 982 "Electromagnetic compatibility and radio spectrum matters (ERM); radio equipment to be used in the 24 GHz band; system reference document for automotive collision warning short range radar ,", 2002.

4. Guan, X. and A. Hajimili, "A 24-GHz CMOS front-end," IEEE J. Solid-State Circuits, Vol. 39, No. 2, 368-373, 2004.
doi:10.1109/JSSC.2003.821783

5. Krishnaswamy, H. and H. Hashemi, "A 4-channel 24-27 GHz UWB phased array transmitter in 0.13 μm CMOS for vehicular radar," IEEE CICC, 753-756, Sep. 2007.

6. Jain, V., S. Sundararaman, and P. Heydari, "A CMOS 22-29 GHz receiver front-end for UWB automotive pulse-radars," IEEE CICC, 757-760, 2007.

7. Kodkani, R. M. and L. E. Larson, "A 24-GHz CMOS passive subharmonic mixer/downconverter for zero-IF applications," IEEE Tran. Microw. Theory Tech., Vol. 56, No. 5, 1247-1256, 2008.
doi:10.1109/TMTT.2008.920177

8. Issakov, W., D. Siprak, M. Tiebout, A. Thiede, W. Simburger, and L. Maurer, "Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS," IET Circuits, Devices & Systems, Vol. 3, No. 6, 340-349, 2009.
doi:10.1049/iet-cds.2009.0134

9. Wang, W. and C. Wu, "The 1-V 24-GHz low-voltage low-power current-mode transmitter in 130-nm CMOS technology," PRIME 2007, 49-52, 2007.

10. Cao, Y., M. Tiebout, and V. Issakov, "A 24 GHz FMCW radar transmitter in 0.13 μm CMOS," ESSCIRC 2008, 498-501, 2008.

11. Kuo, J., Z. Tasi, K. Lin, and H. Wang, "A V-band power amplifier in 0.13 μm CMOS (invited paper)," Microwave Conference, 2008. APMC 2008, 1-4, 2008.
doi:10.1109/APMC.2008.4957860

12. Kim, C., M. Kang, P. Anh, H. Kim, and S. Lee, "An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system," IEEE J. Solid-State Circuits, Vol. 40, No. 2, 544-547, 2005.
doi:10.1109/JSSC.2004.840951

13. Lee, T. H., "The Design of CMOS Radio-frequency Integrated Circuits ," Cambridge Univ. Press, Cambridge, U.K., 1998.

14. Wu, P., C. Wang, T. Huang, and H. Wang, "Compact and broad-band millimeter-wave monolithic transformer balanced mixer," IEEE Tran. Microw. Theory Tech., Vol. 53, No. 10, 3106-3114, 2005.
doi:10.1109/TMTT.2005.855122

15. Tseng, S., C. Meng, C. Chang, C.Wu, and G. Huang, "Monolithic broadband gilbert micromixer with an integrated marchand balun using standard silicon IC process," IEEE Tran. Microw. Theory Tech., Vol. 54, No. 12, 4362-4371, 2006.
doi:10.1109/TMTT.2006.884690

16. Yu, H., S. Choi, S. Kim, and Y. Kim, "K-band balun with slot pattern ground for wide operation using 0.18 μm CMOS technology," IEE Electronics Letters, Vol. 43, No. 5, 293-295, 2007.
doi:10.1049/el:20070092

17. Pozar, D. M., Microwave Enginnering, 3rd Ed., John Wiley & Sons, Inc, 2005.

18. Ponchak, G. E., A. Bacon, and J. Papapolymerou, "Monolithic wilkinson power divider on CMOS grade silicon with a polyimide interface layer for antenna distribution networks," IEEE Antennas Wireless Propag. Lett., Vol. 2, 167-169, 2003.
doi:10.1109/LAWP.2003.819043

19. Chiang, M., H. Wu, and C. C. Tzuang, "A Ka-band CMOS wilkinson power divider using synthetic Quasi-TEM transmission lines," IEEE Micro. Wireless Compon. Lett., Vol. 17, No. 12, 837-839, 2007.
doi:10.1109/LMWC.2007.910475

20. Skolnik, M., Radar Handbook, 3rd Ed., McGraw-Hill, New York, 2008.