Vol. 39
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-04-11
Enhancement of Phased Array Size and Radiation Properties Using Staggered Array Configurations
By
Progress In Electromagnetics Research C, Vol. 39, 49-60, 2013
Abstract
In this paper, two staggered array configurations are presented for enhancing size and radiation properties of wideband phased array systems. The proposed arrays are obtained either by rotating each element 45° or by inserting additional rows in the middle which are shifted by half the distance between elements. These two configurations allow for a smaller distance between array elements (29% less), while the actual distance between elements in the diagonal direction is kept the same. Reducing the distance between elements results in eliminating/reducing the grating lobes in a wider frequency range, which improves the array usable bandwidth. In addition, this proposed array produces better gain and maximum steering angle.
Citation
Abdelnasser Eldek, "Enhancement of Phased Array Size and Radiation Properties Using Staggered Array Configurations," Progress In Electromagnetics Research C, Vol. 39, 49-60, 2013.
doi:10.2528/PIERC13022601
References

1. Parker, D. and D. C. Zimmermann, "Phased arrays --- Part I: Theory and architectures," IEEE Trans. Antennas Propagat., Vol. 50, No. 3, 678-687, Mar. 2002.

2. Eldek, A. A., "Pattern stability optimization for wideband microstrip antennas for phased arrays and power combiners," Microwave Opt. Tech. Lett., Vol. 48, No. 8, 1492-1494, Aug. 2006.
doi:10.1002/mop.21740

3. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

4. Eldek, A. A. and G. Zheng, "A microstrip-fed quasi-rhombus shape double dipole antenna for wideband phased array applications," Microwave Opt. Tech. Lett., Vol. 48, No. 12, 2461-2464, Dec. 2006.
doi:10.1002/mop.21978

5. Eldek, A. A., "Ultra wideband double rhombus antenna with stable radiation patterns for phased array applications," IEEE Trans. Antennas Propagat., Vol. 55, No. 1, 84-91, Jan. 2007.
doi:10.1109/TAP.2006.886560

6. Eldek, A. A., "Wideband 180 degree phase shifter using microstrip-CPW-microstrip transition," Progress In Electromagnetic Research, Vol. 2, 177-187, 2008.

7. Eldek, A. A., "A double rhombus antenna fed by 180 degree phase shifter for ultra wideband phased array applications," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1566-1572, Jun. 2008.
doi:10.1109/TAP.2008.923363

8. Chio, T. H. and D. H. Schaubert, "Parameter study and design of wideband widescan dual-polarized tapered slot antenna arrays," IEEE Trans. Antennas Propagat., Vol. 48, 879-886, Jun. 2000.
doi:10.1109/8.865219

9. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe fed thick-substrate patch antenna mounted on a finite ground plane," IEEE Trans. Antennas Propagat., Vol. 51, 1955-1963, Aug. 2003.

10. Shafai, L., "Scan gain enhancement in phased arrays by element pattern synthesis," IEE Seventh International Conference on Antennas and Propagation (ICAP 91), Vol. 2, 914-917, 1991.

11. Shnitkin, H., J. Green, and P. J. Bertalan, "Asymmetric ridge waveguide radiating element for a scanned planar array," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 55-58, 1988.

12. Green, J., H. Shnitkin, and P. J. Bertalan, "Asymmetric ridge waveguide radiating element for a scanned planar array," IEEE Trans. Antennas Propagat., Vol. 38, No. 8, 1161-1165, 1990.
doi:10.1109/8.56951

13. Song, C. and Q. Wu, "A wide-band phased array antennas with unequal space," 5th Global Symposium on Millimeter Waves (GSMM), 393-396, May 2012.

14. Wang, H., D.-G. Fang, and Y. L. Chow, "Grating lobe reduction in a phased array of limited scanning," IEEE Trans. Antennas Propagt., Vol. 56, No. 6, 1581-1586, 2008.
doi:10.1109/TAP.2008.923354

15. Xia, T., S. Yang, and Z. Nie, "Design of a tapered balun for broadband arrays with closely spaced elements," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1291-1294, 2009.

16. Ansoft Corporation "HFSS: High Frequency Structure Simulator Based on the Finite Element Method,", Version 14, Ansoft Corp., Canonsburg, PA, 2012.