Vol. 51

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Design and Experiment of a Permanent Magnet Tubular Linear Generator for Wave Energy Conversion System

By Zhongxian Chen and Haitao Yu
Progress In Electromagnetics Research C, Vol. 51, 45-53, 2014


In this paper, flux of permanent magnet tubular linear generator (PMTLG) is modeled and analyzed. With the model, air-gap leakage flux coefficient can be expressed analytically in terms of permanent magnet dimensions and air-gap width. The validity of analytical expression of air-gap leakage flux coefficient is verified by finite element analysis (FEA) with a maximum error of 6.8%. Furthermore, longitudinal end flux's influence on the detent force of PMTLG is analyzed in detail with the model. A detent force minimization technique is deduced from the analysis results, and confirmed by FEA. Finally, after optimization of air-gap leakage flux coefficient and detent force, a PMTLG is built and experimented.


Zhongxian Chen and Haitao Yu, "Design and Experiment of a Permanent Magnet Tubular Linear Generator for Wave Energy Conversion System," Progress In Electromagnetics Research C, Vol. 51, 45-53, 2014.


    1. Prudell, J., M. Stoddard, E. Amon, T. K. A. Brekken, and A. V. Jouanne, "A permanent-magnet tubular linear generator for ocean wave energy conversion," IEEE Trans. Ind. Applicant, Vol. 46, No. 6, 2392-2400, 2010.

    2. Leijon, M, H. Bernhoff, O. Agren, J. Isberg, J., Sundberg, M. Berg, K. E. Karlsson, and A. Wolfbrandt, "Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator," IEEE Trans. Energy Conversion, Vol. 20, No. 1, 219-224, 2005.

    3. Danielsson, O. and M. Leijon, "Flux distribution in linear permanent-magnet synchronous machines including longitudinal end effects," IEEE Trans. Magn., Vol. 43, No. 7, 3197-3201, 2007.

    4. Wang, J., D. Howe, and G. W. Jewell, "Fringing in tubular permanent magnet machines: Part I. Magnetic field distribution, flux linkage, and thrust force," IEEE Trans. Magn., Vol. 39, No. 6, 3507-3516, 2003.

    5. Tsai, W. and T. Chang, "Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets," IEEE Trans. Magn., Vol. 35, No. 1, 543-547, 1999.

    6. Hanselman, D. C., Brushless Permanent-magnet Motor Design, McGraw-Hill, New York, 1994.

    7. Qu, R. and T. A. Lipo, "Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machines," Conf. Rec., IEEE-IAS Annul. Meeting, Vol. 2, 1281-1288, 2002.

    8. Faiz, J. and M. E. Salari, "Comparison of the performance of two direct wave energy conversion systems: Archimedes wave swing and power buoy," J. Marine. Sci. Appl., Vol. 10, 421-428, 2011.

    9. Wang, J., M. Inoue, Y. Amara, and D. Howe, "Cogging-force-reduction techniques for linear permanent-magnet machines," IEE Proc. --- Electr. Power Appl., Vol. 152, No. 3, 731-738, 2005.

    10. Lee, J., H. W. Lee, Y. D., Chun, M. Sunwoo, and J. P. Hong, "The performance prediction of controlled-PMLSM in various design schemes by FEM," IEEE Trans. Magn., Vol. 36, No. 4, 1902-1905, 2000.

    11. Ahmad, M. E., H. W. Lee, and M. Nakaoka, "Detent force reduction of a tubular linear generator using an axial stepped permanent magnet structure," Journal of Power Electronics, Vol. 6, No. 4, 290-296, 2006.

    12. Bianchi, N., S. Bolognani, and A. D. F. Cappello, "Reduction of cogging force in PM linear motors by pole-shifting," IEE Proc. --- Electr. Power Appl., Vol. 152, No. 3, 703-709, 2005.

    13. Ji, J., J. Zhao, W. Zhao, Z. Fang, G. Liu, and Y. Du, "New high force density tubular permanent-magnet motor," IEEE Trans. Appl. Supercon, Vol. 24, No. 3, 5200705, 2014.

    14. Ji, J., S. Yan, W. Zhao, G. Liu, and X. Zhu, "Minimization of cogging force in a novel linear permanent-magnet motor for artificial hearts," IEEE Trans. Magn., Vol. 49, No. 7, 3901-3904, 2013.