Vol. 60
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-12-10
Highly Nonlinear and Near-Zero Ultra-Flattened Dispersion Dodecagonal Photonic Crystal Fibers
By
Progress In Electromagnetics Research C, Vol. 60, 115-123, 2015
Abstract
This paper presents a novel and robust design for a new kind of photonic crystal fiber with dodecagonal and circular array of air holes, aiming at a highly nonlinear coefficient, ultra-flattened dispersion and ultra-low confinement loss. In this structure, circular lattices are added in two inner layers to obtain both ultra-low dispersion and ultra-flattened dispersion in a wide wavelength range. The proposed structure has a modest number of design parameters for easier fabrication. The finite difference method with perfectly matched boundary layer is used to analyze guiding properties. Analysis results prove that the proposed highly nonlinear dodecagonal photonic crystal fiber obtains a nonlinear coefficient greater than 43 (W.Km)-1 and low dispersion slope 0.003 ps/(nm.km) at 1.55 μm wavelength. Ultra-flattened dispersion of 0.8 ps/(km.nm) is also obtained ranging from wavelength 1.3 μm to 1.7 μm with confinement loss lower than 0.5×10-6 dB/m in the same wavelength range.
Citation
Samiye Matloub, Reyhaneh Ejlali, and Ali Rostami, "Highly Nonlinear and Near-Zero Ultra-Flattened Dispersion Dodecagonal Photonic Crystal Fibers," Progress In Electromagnetics Research C, Vol. 60, 115-123, 2015.
doi:10.2528/PIERC15091901
References

1. Li, X., Z. Xu, W. Ling, and P. Liu, "Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion," Appl. Opt., Vol. 53, 6682-6687, 2014.
doi:10.1364/AO.53.006682

2. Liao, J., J. Sun, Y. Qin, and M. Du, "Ultra-flattened chromatic dispersion and highly nonlinear photonic crystal fibers with ultralow confinement loss employing hybrid cladding," Optical Fiber Technology, Vol. 19, No. 5, 468-475, October 2013.
doi:10.1016/j.yofte.2013.05.013

3. Su, W., S. Lou, H. Zou, and B. Han, "A highly nonlinear photonic quasi-crystal fiber with low confinement loss and flattened dispersion," Optical Fiber Technology, Vol. 20, No. 5, 473-477, October 2014.
doi:10.1016/j.yofte.2014.05.016

4. Abdur Razzak, S. M. and Y. Namihira, "Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers," IEEE Photonics Technology Letters, Vol. 20, No. 4, February 15, 2008.

5. Zhang, A. and M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Optics Letter, Vol. 30, 2375-2377, 2005.
doi:10.1364/OL.30.002375

6. Nair, A. A., S. K. Sudheer, and M. Jayaraju, "Design and simulation of octagonal photonic crystal fiber for supercontinum generation," Advanced in Optical Science and Engineering, Chapter 25, Springer, India, 2015.

7. Yamamoto, T., H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, "Supercontinuum generation at 1:55 μm in a dispersion-flattened polarization maintaining photonic crystal fiber," Opt. Express, Vol. 11, 1537-1540, 2003.
doi:10.1364/OE.11.001537

8. Namihira, Y., J. Liu, T. Koga, F. Begum, Md. A. Hossein, N. Zou, S. F. Kaijage, Y. Hirako, H. Higa, and Md. A. Islam, "Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion at 1.31_m waveband," Optical Rev., Vol. 18, No. 6, 436-440, 2011.
doi:10.1007/s10043-011-0082-3

9. Finazzi, V., T. M. Monro, and D. J. Richardson, "Small-core holey fibers: Nonlinearity and confinement loss trade-offs," J. Opt. Soc. Am. B, Vol. 20, 1427-1436, 2003.
doi:10.1364/JOSAB.20.001427

10. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fiber, Kluwer Academic Publisher, Boston, 2003.
doi:10.1007/978-1-4615-0475-7

11. Xu, H., J. Wu, K. Xu, Y. Dai, and J. Lin, "Highly nonlinear all-solid photonic crystal fibers with low dispersion slope," Appl. Opt., Vol. 50, 5798-5802, 2011.

12. Olyaee, S. and F. Taghipour, "Ultra-flattened dispersion hexagonal photonic crystal fibre with low confinement loss and large effective area," IET Optoelectron., Vol. 6, 82-87, 2012.
doi:10.1049/iet-opt.2011.0031

13. Zhang, Y. N., L. Y. Ren, Y. K. Gong, X. H. Li, L. R. Wang, and C. D. Sun, "Design and optimization of highly nonlinear low dispersion crystal fiber with high birefringence for four-wave mixing," Appl. Opt., Vol. 49, 3208-3214, 2010.
doi:10.1364/AO.49.003208

14. Abdur Razzak, S. M., M. A. Goffar Khan, Y. Namihira, and M. Y. Hussain, "Optimum design of a dispersion managed photonic crystal fiber for nonlinear optics applications in telecom systems," Proceedings of the Fifth International Conference on Electrical and Computer Engineering (ICECE), 570-573, 2008.
doi:10.1109/ICECE.2008.4769274

15. Saitoh, K., N. J. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express, Vol. 13, 8365-8371, 2005.
doi:10.1364/OPEX.13.008365

16. Tan, X., Y. Geng, Z. Tian, P. Wang, and J. Yao, "Study of ultraflattened dispersion square-lattice photonic crystal fiber with low confinement loss," Optoelectron. Lett., Vol. 5, 124-127, 2009.
doi:10.1007/s11801-009-8194-8

17. Abdur Razzak, S. M., Md. A. Goffar Khan, F. begum, and S. Kaijage, "Guiding properties of a decagonal photonic crystal fiber," Journal of Microwaves and Optoelectronics, Vol. 6, No. 1, 2007.

18. Abdur Razzak, S. M., F. Begum, S. Kaijage, and N. Zou, "Design of a decagonal photonic crystal fiber for ultra-flattened chromatic dispersion," IEICE Trans. Electron., Vol. E90-C, No. 11, 2007.

19. Li, D.-M., G.-Y. Zhou, C.-M. Xia, C. Wang, and J.-H. Yuan, "Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband," Chin. Phys. B, Vol. 23, 044209, 2014.
doi:10.1088/1674-1056/23/4/044209

20. Kim, J., "Design of nonlinear photonic crystal fibers with a double-cladded coaxial core for zero chromatic dispersion," Appl. Opt., Vol. 51, 6896-6900, 2012.
doi:10.1364/AO.51.006896

21. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Optics Express, Vol. 13, No. 10, 3728, 2005.
doi:10.1364/OPEX.13.003728