Vol. 63
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-04-27
Design of Flexible Passive Antenna Array on Kapton Substrate
By
Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016
Abstract
Recently, the RF/microwave electronic technology evolved with the consideration of plastic and organic substrates. Such a technology offers two-folded benefits: in one side for lowering the fabrication cost and in another side for the possibility to bend electronic devices. Such a technology is particularly interesting for the implementation of antenna system. This paper is dealing with the design of flexible microstrip antenna 1:2 array. Theoretical approach on the typically symmetrical antenna 1:2 array is proposed. The design methodology of microstrip antenna combined with 1:2 T-power divider (T-PWD) is described. Based on the transmission line theory, the S-parameter model of the antenna system with non-standard reference load is established. Then, the microstrip antenna passive system is theoretical analysed in function of the physical dimensions of the designed structure. The feasibility of the flexible antenna passive system is investigated with the proof-of-concept (POC) designed on Kapton substrate. The POC prototype consisted of microstrip antenna 1:2 array is designed to operate at about 5.8 GHz. Comparisons between the full wave simulated and measured return losses were performed. Then, simulated radiation pattern highlights the efficiency of the fabricated prototype of passive antenna array.
Citation
Yvon Georges Rabobason, Greg P. Rigas, Srijittra Swaisaenyakorn, Bobur Mirkhaydarov, Blaise Ravelo, Maxim Shkunov, Paul R. Young, and Nabil Benjelloun, "Design of Flexible Passive Antenna Array on Kapton Substrate," Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016.
doi:10.2528/PIERC15120906
References

1. Lee, J.-S., C.-C. Chuang, and C.-C. Shen, "Applications of short-range wireless technologies to industrial automation: A ZigBee approach," Proc. of 5th Advanced International Conference on Telecommunications, 2009 (AICT’09), 15-20, Venice, Italy, May 24–28, 2009.

2. Yang, L. and M. M. Tentzeris, "Design and characterization of novel paper-based inkjet-printed RFID and microwave structures for telecommunication and sensing applications," Proc. of IEEE MTT-S International Microwave Symposium (IMS’07), 1633-1636, Honolulu, HI, Jun. 3–8, 2007.

3. Monti, G., L. Corchia, and L. Tarricone, "Fabrication techniques for wearable antennas," Proc. of European Radar Conference (EuRAD) 2013, 435-438, Nuremberg, Germany, Oct. 9–11, 2013.

4. Konstas, Z., A. Rida, R. Vyas, K. Katsibas, N. Uzunoglu, and M. M. Tentzeris, "A novel “Green” inkjet-printed Z-shaped monopole antenna for RFID applications," Proc. of IEEE 3rd European Conference on Antennas and Propagation (EuCAP’09), 2340-2343, Berlin, Germany, Mar. 23–27, 2009.

5. Main, Y., Q. Chen, L.-R. Zheng, and H. Tenhunen, "Development and analysis of flexible UHF RFID antennas for “Green” electronics," Progress In Electromagnetics Research, Vol. 130, 1-15, 2012.
doi:10.2528/PIER12060609

6. Yang, L., L. Martin, D. Staiculescu, C. P. Wong, and M. M. Tentzeris, "Design and development of compact conformal RFID antennas utilizing novel flexible magnetic composite materials for wearable RF and biomedical applications," Proc. of Antennas and Propagation Society International Symposium 2008, 1-4, San Diego, CA, Jul. 5–11, 2008.

7. Kim, D. O., C. Y. Kim, and D. G. Yang, "Flexible Hilbert-curve loop antenna having a tripleband and omnidirectional pattern for WLAN/WiMAX applications," Int. Journal Antenna and Propagation, Vol. 2012, 1-9, 2012.
doi:10.1155/2012/687256

8. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. on Ant. and Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449

9. "COLAE (Commercializing Organic and Large Area Electronics),", http://www.colae.eu/, accessed 2014.
doi:10.1109/TAP.2012.2223449

10. Durgun, A. C., M. S. Reese, C. A. Balanis, C. R. Birtcher, D. R. Allee, and S. Venugopal, "Design, simulation, fabrication and testing of flexible bow-tie antennas," IEEE Trans. on Ant. and Propag., Vol. 59, No. 12, 4425-4435, Dec. 2011.
doi:10.1109/TAP.2011.2165511

11. Chien, H.-Y., C.-Y.-D. Sim, and C.-H. Lee, "Compact size dual-band antenna printed on flexible substrate for WLAN operation," Proc. of Int. Symp. on Antennas and Propagation (ISAP), 2012, 1047-1050, Nagoya, Japan, Oct. 29–Nov. 2, 2012.

12. Paul, D. L., L. Zhang, and L. Zheng, "Flexible dual-band LCP antenna for RFID applications," Proc. of URSI International Symposium on Electromagnetic Theory (EMTS) 2013, 973-976, Hiroshima, Japan, May 20–24, 2013.

13. Khaleel, H. R., H. M. Al-Rizzo, and A. I. Abbosh, "Design, fabrication, and testing of flexible antennas," Intech Open Book, Advancement in Microstrip Antennas with Recent Applications, ed. by A. Kishk, Chap. 5, 363-383, Mar. 2013.

14. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2 Ed., SciTech Publishing Inc., Raleigh, NC, 2004.

15. Fenn, A. J., D. H. Temme, W. P. Delaney, and W. E. Courtney, "The development of phased-array radar technology," Lincoln Laboratory Journal, Vol. 12, No. 2, 321-340, 2000.

16. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Wideband 2D array of microstrip fed rectangularslot antennas for radar applications," Microwave and Optical Technology Letters, Vol. 46, No. 1, 36-40, Oct. 2005.
doi:10.1002/mop.20894

17. James, J. R., P. S. Hall, and C. Wood, Microstrip Antenna Theory and Design, 103-109, Peter Peregrinus, Ltd., New York, USA, 1981.

18. Verma, A. K. and Nasimuddin, "Analysis of circular microstrip antenna of thick susbstrate," Journal of Microwaves, Optoelectronics, and Electromagnetics Applications, Vol. 2, No. 5, 30-38, Jul. 2002.

19. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2002.

20. Goswami, K., A. Dubey, G. C. Tripathi, and B. Singh, "Design and analysis of rectangular microstrip antenna with PBG structure for enhancement of bandwidth," Global Journal of Research Engineering, Vol. 11, No. 2, 22-28, Mar. 2011.

21. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

22. Kasabegoudar, V. G. and K. J. Vinoy, "A broadband suspended microstrip antenna for circuit polarization," Progress In Electromagnetics Research, Vol. 90, 353-368, 2009.
doi:10.2528/PIER09012901

23. Ojha, J. R. and M. Peters, "Patch antennas and microstrip lines," Intech Open Book, Microwave and Millimeter Wave Technologies: Modern UWB Antennas and Equipment, 50-62, Rijeka, Croatia, Mar. 2010.

24. Polyimides, UBE America Inc., http://www.ube.com/content.php?pageid=130, accessed 2015.

25. Ravelo, B., "Behavioral model of symmetrical multi-level T-tree interconnects," Progress In Electromagnetics Research B, Vol. 41, 23-50, 2011.

26. Hammerstad, E. and O. Jensen, "Accurate models for microstrip computer aided design," IEEE MTT-S Int. Microwave Symposium Digest, 407-409, Washington, DC, May 28–30, 1980.

27. Balanis, C. A., Antenna Theory: Analysis and Design, 2 Ed., Chap. 6, Wiley, 1997.

28., Polyimides, UBE America Inc, http://www.ube.com/content.php?pageid=130, accessed 2015.

29., http://www2.dupont.com/Kapton/en US/assets/downloads/pdf/HN datasheet.pdf, accessed 2014.