Vol. 69
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-11-23
Mechanism of Two Resonant Modes for Highly Resonant Wireless Power Transfer and Specific Absorption Rate
By
Progress In Electromagnetics Research C, Vol. 69, 181-190, 2016
Abstract
In this work, the dosimetry for two resonant modes of a highly resonant wireless power transfer (HR-WPT) system is investigated, and the results are compared. The physical mechanism of the two resonant modes, which occur when the two transmitting and receiving resonators are extremely close to one another, is presented with the simulated results and the equivalent circuit models for the HR-WPT system. The difference between the two resonant modes for the specific absorption rate induced in the head model is discussed by comparing the electromagnetic fields for each mode. Furthermore, the dosimetry for the four-coil HR-WPT system is also investigated under the conditions of a single resonant mode and two resonant modes. The specific absorption rates (SARs) are calculated with head-size and body-size simplified human models at various distances from the WPT system and in each mode. The electric and magnetic fields of the odd mode show stronger distribution than those of the even mode in the area near to the WPT system, while the opposite results are found in the area farther away.
Citation
Sang Wook Park, "Mechanism of Two Resonant Modes for Highly Resonant Wireless Power Transfer and Specific Absorption Rate," Progress In Electromagnetics Research C, Vol. 69, 181-190, 2016.
doi:10.2528/PIERC16083004
References

1. Tesla, N., "Apparatus for transmitting electrical energy,", US patent number 1,119,732, 1914.
doi:10.1126/science.1143254

2. Kurs, A. K., A. Moffatt, R. Joannopoulos, J. D. Fisher, P., and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1109/TIE.2010.2046002

3. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1587/elex.6.1421

4. Hirayama, H., T. Ozawa, Y. Hiraiwa, N. Kikuma, and K. Sakakibara, "A consideration of electromagnetic- resonant coupling mode in wireless power transmission," IEICE Elec. Exp., Vol. 6, No. 19, 1421-1425, 2009.

5. Sekine, D. and M. Taki, "Relationship between human exposure and resonance mode of wireless power transfer with magnetic resonance," IEICE Conf., B-4-8, 2012 (Japanese).
doi:10.1088/0031-9155/58/17/N241

6. Hirata, A., F. Ito, and I. Laakso, "Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system," Phys. Med. Biol., Vol. 58, N241-N249, 2013.
doi:10.1109/TMTT.2013.2274053

7. Park, S., K. Wake, and S. Watanabe, "Incident electric field effect and numerical dosimetry for a wireless power transfer system using magnetically coupled resonances," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3461-3469, 2013.
doi:10.5515/JKIEES.2015.15.3.129

8. Park, S., "Dosimetry for resonance-based wireless power transfer charging of electric vehicles," J. Electromagn. Eng. Sci., Vol. 15, No. 3, 129-133, 2015.

9. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz)," Health Phys., Vol. 74, 494-522, 1998.

10. ICNIRP "Guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz to 100 kHz)," Health Phys., Vol. 99, 818-836, 2010.

11. IEEE "Standard for safety levels with respect to human exposure to electromagnetic fields, 0– 3kHz," IEEE Standard, C95.6, 2002.

12. IEEE "Standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz," IEEE Standard, C95.1, 2005.

13. Bleaney, B. I. and B. Bleaney, Electricity and Magnetism, 3rd Ed., Oxford Univ. Press, Oxford, 1976.

14. Montgomery, C. G., R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, McGraw-Hill, New York, 1948.

15., Computer Simulation Technology, , Available online: www.cst.com (accessed on August 15, 2016).
doi:10.1088/0031-9155/49/1/001

16. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic field dosimetry," Phys. Med. Biol., Vol. 49, 1-15, 2004.

17. Gabriel, C. and S. Gabriel, "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Brooks AFB, San Antonio, TX, USA, 2006.

18. FEKO — EM Simulation Software, Available online: www.feko.info (accessed on August 15, 2016).