Vol. 71
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-02
Enhanced Low Profile, Dual-Band Antenna via Novel Electromagnetic Band Gap Structure
By
Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017
Abstract
This paper presents a dual-band, low profile antenna with reduced specific absorption rate (SAR) for mobile handset applications. Here, dual-band operation is obtained by combining a printed dipole antenna (initially resonating at 4.3 GHz) with EBG mushroom-like structures loaded with circular slots (CS). The final structure operates at 3.44 GHz (additional band required for LTE Advanced LTE-A) and 4.5 GHz (for Smartphone WLAN applications) with improved bandwidth and reflection coefficient (350-MHz around 3.5 GHz with -26 dB, and 330 MHz around 4.5 GHz with -30 dB). Finally, a dosimetry study of the proposed printed dual-band dipole antenna is presented and verifies an SAR reduction from 9 W/Kg to 1.41W/Kg compared to the same antenna without any loading structure, and from 3.98 W/Kg to 1.41 W/Kg compared to a standard EBG mushroom-like structure.
Citation
Mohammad El Ghabzouri, Abdenacer Es Salhi, Pedro Anacleto, and Paulo Mendes, "Enhanced Low Profile, Dual-Band Antenna via Novel Electromagnetic Band Gap Structure," Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017.
doi:10.2528/PIERC16110904
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablanovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

2. Yang, F. and Y. Rahmat-Samii, "A low profile circularly polarized curl antenna over an EBG surface," Microwave Optical Tech. Lett., Vol. 31, No. 4, 264–7, 2001.
doi:10.1002/mop.10006

3. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003.

4. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterization of an Electromagnetic Band- Gap (EBG) surface," Proc. IEEE AP-S Dig., Vol. 3, 744-747, 2002.

5. Elsheakh, N., H. A. Elsadek, and E. A. Abdallah, "Investigated new embedded shapes of electromagnetic band gap structures and via effect for improved microstrip patch antenna performanced," Progress In Electromagnetics Research B, Vol. 20, 91-107, 2010.
doi:10.2528/PIERB09122004

6. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

7. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842

8. Ikeuchi, R. and A. Hirata, "Dipole antenna above EBG substrate for local SAR reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 904-906, 2011.
doi:10.1109/LAWP.2011.2167119

9. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by Electromagnetic Band-Gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832

10. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Switchable and tunable notch in ultra-wideband filter using electromagnetic bandgap structure," EEE Microwave and Wireless Components Letters, Vol. 24, No. 12, 2014.

11. El Ghabzouri, M., A. Es Salhi, and P. M. Mendes, "New technique to drive the central frequency and to improve bandwidth of EBG structures," IEEE Mediterranean Microwave Symposium 2015 (MMS 2015), Lecce, Italy, 2015.

12. El Ghabzouri, M., A. Es Salhi, and P. M. Mendes, "Shifting the half wave dipole antenna resonance using EBG structure," IEEE International Conference of Microelectronics 2015 (ICM 2015), Casablanca, Morocco, 2015.

13. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

14. Fallah, M., F. Hojat-Kashani, and S. H. M. Armaki, "Side effect characterization of EBG structures in microstrip patch antenna," PIERS Proceedings, 323-326, Cambridge, USA, July 5–8, 2010.

15. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic band gap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702

16. Ikeuchi, R., K. H. Chan, and A. Hirata, "SAR and radiation characteristics of a dipole antenna above different finite EBG substrates in the presence of the realistic head model in the 3.5 GHz band," Progress In Electromagnetics Research B, Vol. 44, 53-70, 2012.
doi:10.2528/PIERB12072005

17. Kulkarni, V. A. and V. S. Navale, "Performance measurement of polarization diversity printed dipole antenna using hight frequency pin diode for WLAN," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, 1917-1923, 2013.

18. Ma, X., S. Mi, and Y. H. Lee, "Design of a microstrip antenna using square Sierpinski fractal EBG structure," IEEE 4th Asia-Pacific Conference on Antenna and Propagation (APCAP), 2015.

19. McMichael, I. T., E. C. Nallon, V. P. Waymond, R. Scott, Jr., and M. S. Mirotznik, "EBG antenna for GPR colocated with a mital detector for landmine detection," IEEE Geoscience and Remote Sensing Letters, 1-5, 2013.

20. Kaharpardeshi, K. T., S. UvaidUllah, and S. Zafar, "Influence of circular patched EBG substrate on SAR and far-field pattern of dipole phase-array antenna," 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS, 2014.

21., Printed dipole antenna with integrated balun, CST 2014.

22., IEEE Std C95.1TM-2005 (Revision of IEEE Std C95.1-1991), April 19, 2006.

23. Rahim, T. and J. Xu, "Design of high gain and wide band EBG resonator antenna with dual layers of same dielectric superstrate at X-bands," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 15, No. 2, 2016.
doi:10.1590/2179-10742016v15i2558

24. Hoang, T. V., T. T. Le, Q. Y. Li, and H. C. Park, "Quad-band circularly polarized antenna for 2.4/5.3/5.8 GHz WLAN and 3.5 GHz WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1032-1035, 2015.

25. Ayop, O. and M. K. A. Rahim, "Analysis of Mushroom-like electromagnetic band gap structure using suspended transmission line technique," 2011 IEEE International RF and Microwave Conference (RFM 2011), Seremban, Malaysia, 2011.