Vol. 70
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-01-18
An Novel Absorber Screen Design Method Based on Receiving Antenna Principle
By
Progress In Electromagnetics Research C, Vol. 70, 193-199, 2016
Abstract
This paper presents a novel design method to the absorber screen based on the receiving antenna technique. When the electromagnetic waves is incident upon the surface of absorbing structure, part of the electromagnetic energy transforms into current absorbed at the port, and the remaining energy is reflected. The former mechanism is similar to the receiving antenna. Hence, a dual-polarized magneto-electric dipole antenna is selected and optimized to obtain a broadband absorber screen unit after comparing the similarities between the antenna and absorber. The measurement results show that the finite 6×6 array absorber has a 73% bandwidth for 10 dB RCS reduction, while its thickness of substrate is below 1/9 wavelength of the center frequency in free space. The novel absorber screen can also be used in dual polarization because of its symmetrical property. The simulation and measurement are performed at the normal incidence in this paper.
Citation
Qian Song, Wei Tang, Liang-Hao Yuan, and Jiao-Jiao Xie, "An Novel Absorber Screen Design Method Based on Receiving Antenna Principle," Progress In Electromagnetics Research C, Vol. 70, 193-199, 2016.
doi:10.2528/PIERC16112401
References

1. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propagat., Vol. 36, 1443-1454, Oct. 1988.
doi:10.1109/8.8632

2. He, S., F. Ding, L. Mo, and F. Bao, "Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films," Progress In Electromagnetics Research, Vol. 147, 69-79, 2014.
doi:10.2528/PIER14040306

3. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "Low-cost metamaterial absorbers for sub- GHz wireless systems," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 2014.
doi:10.1109/LAWP.2013.2294791

4. Wen, Q.-Y., Z.-Y. Liu, L. Yin, Z. Chen, Q.-H. Yang, and H.-W. Zhang, "Metamaterials based terahertz absorber and modulator," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AM, 1-3, Jul. 2016.

5. Tomeo-Reyes, I. and E. Rajo-Iglesias, "Comparative study on different HIS as ground planes and its application to low profile wire antennas design," Progress In Electromagnetics Research, Vol. 115, 55-77, 2011.
doi:10.2528/PIER11012805

6. Dewan, R., S. K. B. A. Rahim, S. F. Ausordin, and T. Purnamirza, "The improvement of array antenna performance with the implementation of an artificial magnetic conductor (AMC) ground plane and in-phase superstrate," Progress In Electromagnetics Research, Vol. 140, 147-167, 2013.
doi:10.2528/PIER13040206

7. Zhao, L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
doi:10.2528/PIER12062406

8. Dalarsson, M., M. K. Norgren, T. Asenov, and N. Doncov, "Arbitrary loss factors in the wave propagation between RHM and LHM media with constant impedance throughout the structure," Progress In Electromagnetics Research, Vol. 137, 527-538, 2013.
doi:10.2528/PIER13013004

9. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonator," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403

10. McVay, J., A. Hoorfar, and N. Engheta, "Thin absorbers using spacefilling-curve high-impedance surfaces," IEEE Antennas and Propagat. Soc. Int. Symp., Vol. 2A, 22-25, Jul. 2005.

11. Singh, P. K., S. K. Ameri, L. Chao, M. N. Afsar, and S. Sonkusale, "Broadband millimeterwave metamaterial absorber based on embedding of dual resonators," Progress In Electromagnetics Research, Vol. 142, 625-638, 2013.
doi:10.2528/PIER13070209

12. Kitagawa, S., R. Suga, K. Araki, and O. Hashimoto, "Active absorption/transmission FSS using diodes," IEEE International Symposium on Electromagnetic Compatibility (EMC), 1538-1541, Aug. 2015.

13. Wang, M., C. Hu, M. Pu, C. Huang, X. Ma, and X. Luo, "Electrical tunable L-band absorbing material for two polarisations," Electronics Letters, Vol. 48, No. 16, 1002-1003, 2012.
doi:10.1049/el.2012.1318

14. Ye, H., W. Che, and C. Christopoulos, "Microwave absorbers made of arrays of square loops with lumped resistors through optimization with genetic algorithm approach," General Assembly and Scientific Symposium (URSI GASS), 1-4, Aug. 2014.

15. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd, John Wiley & Sons, 2005.

16. Wu, B. Q. and K.-M. Luk, "A broadband dual-polarized magneto-electric dipole antenna with simple feeds," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.

17. Yang, J. and Z. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 2007.

18. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402