Vol. 74
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-05-30
A Wideband Doherty Power Amplifier with Shunted Reactive Load for Efficiency Enhancement
By
Progress In Electromagnetics Research C, Vol. 74, 151-160, 2017
Abstract
A highly efficient Doherty power amplifier (DPA) using shunted reactive load is designed to achieve wideband operation. For enhanced back-off efficiency over the whole bandwidth, a modified load modulation network (LMN), which employs a shunted reactive load at the combining point, was firstly designed to enlarge the effective load impedance of the carrier amplifier at low and high frequencies. Then, the two-point matching approach was employed to design the carrier and peaking output matching networks, which can eliminate the use of offset lines and simplify the LMN. Measurement results show that the designed DPA can deliver an efficiency of 48%-61% at 6 dB back-off power over the frequency band of 2.2-2.9 GHz. For a 20 MHz LTE modulated signal, an average efficiency of higher than 55% can be achieved at an average output power of 37 dBm, while the adjacent channel leakage ratio is below -49 dBc after linearization.
Citation
Wa Kong, Jing Xia, Da-Wei Ding, Li-Xia Yang, Chao Yu, and Yongzhao Zhan, "A Wideband Doherty Power Amplifier with Shunted Reactive Load for Efficiency Enhancement," Progress In Electromagnetics Research C, Vol. 74, 151-160, 2017.
doi:10.2528/PIERC17031703
References

1. Chen, S. and Q. Xue, "Optimized load modulation network for Doherty power amplifier performance enhancement ," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 11, 3474-3481, Nov. 2012.
doi:10.1109/TMTT.2012.2215625

2. Fan, C. Z., X. W. Zhu, J. Xia, and L. Zhang, "Efficiency enhanced class-F Doherty power amplifier at 3.5 GHz for LTE-advanced application," Asia-Pacific Microwave Conference (APMC), 707-709, Seoul, 2013.

3. Xia, J., X. Zhu, L. Zhang, J. Zhai, and Y. Sun, "High-efficiency GaN Doherty power amplifier for 100 MHz LTE-advanced application based on modified load modulation network," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 8, 2911-2921, Aug. 2013.
doi:10.1109/TMTT.2013.2269052

4. Nghiem, X. A. and R. Negra, "Design of a concurrent quad-band GaN-HEMT Doherty power amplifier for wireless applications," IEEE MTT-S International Microwave Symposium Digest, 1-4, Seattle, WA, USA, Jun. 2013.

5. Ozen, M. and C. Fager, "Symmetrical Doherty amplifier with high efficiency over large output power dynamic range," IEEE MTT-S International Microwave Symposium Digest, 1-3, Tampa, FL, USA, Jun. 2014.

6. Camarchia, V., S. Donati Guerrieri, G. Ghione, et al. "A K band GaAs MMIC Doherty power amplifier for point to point microwave backhaul applications," International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMiC’14), 1-3, Leuven, Belgium, Apr. 2014.

7. Xia, J. and X. Zhu, "Doherty power amplifier with enhanced in-band load modulation for 100 MHz LTE-advanced application," Microwave and Optical Technology Letters, Vol. 57, No. 2, 391-395, Feb. 2015.
doi:10.1002/mop.28854

8. Park, Y., J. Lee, S. Jee, S. Kim, and B. Kim, "Optimized Doherty power amplifier with a new offset line," IEEE MTT-S International Microwave Symposium Digest, 1-4, Phoenix, AZ, USA, Jun. 2015.

9. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 934-944, Apr. 2011.
doi:10.1109/TMTT.2010.2098040

10. Kang, D., D. Kim, Y. Cho, B. Park, J. Kim, and B. Kim, "Design of bandwidth-enhanced Doherty power amplifiers for handset applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3474-3483, Dec. 2011.
doi:10.1109/TMTT.2011.2171042

11. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6 GHz wideba GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745

12. Akbarpour, M., M. Helaoui, and F. M. Ghannouchi, "A transformerless load-modulated (TLLM) architecture for efficient wideband power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 9, 2863-2874, Sep. 2012.
doi:10.1109/TMTT.2012.2206050

13. Seo, M., H. Lee, J. Gu, and Y. Yang, "Doherty power amplifier using a compact load network for bandwidth extension," Asia-Pacific Microwave Conference (APMC), 742-744, Seoul, 2013.

14. Piazzon, L., P. Colantonio, R. Giofre, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave Wireless Components Letters, Vol. 23, No. 11, 626-628, Nov. 2013.
doi:10.1109/LMWC.2013.2281413

15. Abadi, M. N. A., H. Golestaneh, H. Sarbishaei, and S. Boumaiza, "An extended bandwidth Doherty power amplifier using a novel output combining," IEEE MTT-S International Microwave Symposium Digest, 1-3, Tampa, FL, USA, Jun. 2014.

16. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth," IEEE Microwave Wireless Components Letters, Vol. 24, No. 11, 775-777, Nov. 2014.
doi:10.1109/LMWC.2014.2345193

17. Watanabe, S., Y. Takayama, R. Ishikawa, and K. Honjo, "A miniature broadband Doherty power amplifier with a series-connected load," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 572-579, Feb. 2015.
doi:10.1109/TMTT.2014.2377725

18. Nghiem, X. A., J. Guan, and R. Negra, "Broadband sequential power amplifier with Doherty-type active load modulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2821-2832, Sep. 2015.
doi:10.1109/TMTT.2015.2456901

19. Fang, X. H. and K. K. M. Cheng, "Improving power utilization factor of broadband Doherty amplifier by using bandpass auxiliary transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2811-2820, Sep. 2015.
doi:10.1109/TMTT.2015.2447544

20. Pang, J., S. He, C. Huang, Z. Dai, J. Peng, and F. You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, Dec. 2015.
doi:10.1109/TMTT.2015.2495201

21. Xia, J., M. Yang, Y. Guo, and A. Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, Jul. 2016.
doi:10.1109/TMTT.2016.2574861

22. Abadi, M. N. A., H. Golestaneh, H. Sarbishaei, and S. Boumaiza, "Doherty power amplifier with extended bandwidth and improved linearizability under carrier-aggregated signal stimuli," IEEE Microwave Wireless Components Letters, Vol. 26, No. 5, 358-360, May 2016.
doi:10.1109/LMWC.2016.2549281