Vol. 74
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-05-28
Coupled Line Rat-Race Coupler with Wide Adjustable Power Dividing Ratio and Uncrossed Input/Output Ports
By
Progress In Electromagnetics Research C, Vol. 74, 131-140, 2017
Abstract
A novel rat-race coupler with wide adjustable range of power-dividing ratio and uncrossed input/output ports is presented by using coupling adjustable trans-directional (TRD) coupled lines, parallel coupled lines and a 180° phase shifting line. Wide adjustable range of power-dividing ratios is accomplished by varying the coupling of the TRD coupled lines. Moreover, with the combination of the TRD coupled lines and parallel coupled lines, the input and output ports of the rat-race coupler are uncrossed. The structure of the proposed rat-race coupler is analyzed, and the design equations are derived. As an example to validate the feature of the proposed rat-race coupler, a prototype operating at 1.6 GHz is devised, fabricated and measured. The measured results show that the designed coupler has a wide adjustable range (-7 ~ 15 dB) of power dividing ratio with a controlled voltage range of 3.5 to 13.5 V. 
Citation
Hongmei Liu, Shao-Jun Fang, and Zhongbao Wang, "Coupled Line Rat-Race Coupler with Wide Adjustable Power Dividing Ratio and Uncrossed Input/Output Ports," Progress In Electromagnetics Research C, Vol. 74, 131-140, 2017.
doi:10.2528/PIERC17032401
References

1. Reed, J. and G. J. Wheeler, "A method of analysis of Symmetrical four-port networks," IRE Trans. Microw. Theory Tech., Vol. 4, No. 10, 246-252, Oct. 1956.

2. Alimenti, F., P. Mezzanotte, S. Giacomucci, M. Dionigi, C. Mariotti, M. Virili, and L. Roselli, "24 GHz single-balanced diode mixer exploiting cellulose-based materials," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 11, 596-598, 2013.
doi:10.1109/LMWC.2013.2279125

3. Gandini, E., M. Ettorre, R. Sauleau, and A. Grbic, "A lumped-element unit cell for beam-forming networks and its application to a miniaturized butler matrix," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 4, 1477-1487, 2013.
doi:10.1109/TMTT.2013.2248744

4. Fardin, E. A., A. S. Holland, and K. Ghorbani, "Electronically tunable lumped element 90◦ hybrid coupler," Electronics Letters, Vol. 42, No. 6, 2006.
doi:10.1049/el:20060129

5. Djoumessi, E. E., E. Marsan, C. Caloz, M. Chaker, and K. Wu, "Varactor tuned dual band quadrature hybrid coupler," IEEE Microwave Compon. Lett., Vol. 16, No. 11, 603-605, Nov. 2006.
doi:10.1109/LMWC.2006.884905

6. Ferrero, F. and G. Jacquemod, "A tunable quasi-lumped microstrip coupler and RF applications," IEEE/MTT-S International Microwave Symposium, 2007.

7. Hsieh, H. H., Y. T. Liao, and L. H. Lu, "A compact quadrature hybrid MMIC using CMOS active inductors," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 6, 1098-1104, Jun. 2007.
doi:10.1109/TMTT.2007.896815

8. Lehmann, T., H. Mextorf, and R. Knoechel, "Design of quadrature directional couplers with continuously variable coupling ratios," Proc. Eur. Microw. Conf., 199-202, 2008.

9. Yeung, L. K., "A compact directional coupler with tunable coupling ratio using coupled-line sections," Proc. Asia-Pacific Microw. Conf., 1730-1733, 2011.

10. Abdalla, M. A. Y., K. Phang, and G. V. Eleftheriades, "A compact highly reconfigurable CMOSMMIC directional coupler," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 305-319, Feb. 2008.
doi:10.1109/TMTT.2007.913360

11. Hur, B. and W. R. Eisenstadt, "Tunable broadband MMIC active directional coupler," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 168-176, Jan. 2013.
doi:10.1109/TMTT.2012.2228218

12. Zhou, M., B. Arigong, H. Ren, R. G. Zhou, and H. L. Zhang, "A varactor based 90 directional coupler with tunable coupling ratios and reconfigurable responses," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 3, 416-421, Mar. 2014.
doi:10.1109/TMTT.2014.2299522

13. Cheng, K. K. M. and S. Yeung, "A novel rat-race coupler with tunable power dividing ratio, ideal port isolation, and return loss performance," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 55-60, 2013.
doi:10.1109/TMTT.2012.2228219

14. Cheng, K. K. M. and M. C. J. Chik, "A frequency-compensated rat-race coupler with wide bandwidth and tunable power dividing ratio," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 2841-2847, 2013.
doi:10.1109/TMTT.2013.2271610

15. Wang, Z. B., Y. Cao, S. J. Fang, and Y. A. Liu, "Miniaturized rat-race coupler with tunable power dividing ratio based on open-and short-circuited transdirectional coupled lines," Microwave Opt. Technol. Lett., Vol. 58, No. 11, 2683-2689, 2016.
doi:10.1002/mop.30124

16. Napijalo, V. and B. Kearns, "Multilayer 180 hybrid coupler," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2525-2535, Nov. 2008.
doi:10.1109/TMTT.2008.2005923

17. Napijalo, V., "Coupled line 180 hybrids with lange couplers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 12, 3674-3682, Dec. 2012.
doi:10.1109/TMTT.2012.2217980

18. Liu, H. M., S. J. Fang, and Z. B. Wang, "Novel coupled line 180 hybrid with non-interspersed input and output ports," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 11, 2641-2649, Nov. 2014.

19. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGraw-Hill, New York, NY, USA, 1992.