Vol. 76
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-18
Dual-Polarized Multi-Band Infrared Energy Harvesting Using h -Shaped Metasurface Absorber
By
Progress In Electromagnetics Research C, Vol. 76, 1-10, 2017
Abstract
We present the design of an infrared metasurface harvester based on the full absorption concept. The metasurface unit cells consist of an H-shaped resonator with the load placed across the gap of the resonator. Different from infrared metamaterial absorber designs, the resonator is capable of not only full absorption but also maximum energy channeling across the load resistance. Numerical simulation demonstrates that 96% of the absorbed energy is dissipated across the load resistance. In addition, cross-polarized H-resonators design is presented, which is capable of harvesting infrared energy using dual polarizations within three frequency bands.
Citation
Thamer Almoneef, and Omar M. Ramahi, "Dual-Polarized Multi-Band Infrared Energy Harvesting Using h -Shaped Metasurface Absorber," Progress In Electromagnetics Research C, Vol. 76, 1-10, 2017.
doi:10.2528/PIERC17042105
References

1. Mankins, J. C., The Case for Space Solar Power, Virginia Edition Publishing, 2014.

2. Myers, D. R., Solar Radiation: Practical Modeling for Renewable Energy Applications, CRC Press, 2013.

3. Luque, A., "Will we exceed 50% effciency in photovoltaics?," Journal of Applied Physics, Vol. 110, No. 3, 2011. [Online], Available: http://scitation.aip.org/content/aip/journal/jap/110/3/10.1063/1.3600702.
doi:10.1063/1.3600702

4. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
doi:10.1115/1.4000577

5. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 1961.
doi:10.1063/1.1736034

6. King, R. R., D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, "40 gainpgainasge multijunction solar cells," Applied Physics Letters,, Vol. 90, No. 18, 2007. [Online], Available: http://scitation.aip.org/content/aip/journal/apl/90/18/10.1063/1.2734507.
doi:10.1063/1.2734507

7. Bailey, R. L., "A proposed new concept for a solar-energy converter," Journal of Engineering for Gas Turbines and Power, Vol. 94, No. 2, 73-77, 1972.
doi:10.1115/1.3445660

8. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, July 2011.
doi:10.1109/JPHOTOV.2011.2160489

9. Dregely, D., R. Taubert, J. Dorfm¨uller, R. Vogelgesang, K. Kern, and H. Giessen, "3d optical yagi-uda nanoantenna array," Nature Communications, Vol. 2, 267, 2011.
doi:10.1038/ncomms1268

10. Novotny, L. and N. Van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.
doi:10.1038/nphoton.2010.237

11. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical yagi-uda antenna," Nature Photonics, Vol. 4, No. 5, 312-315, 2010.
doi:10.1038/nphoton.2010.34

12. Viti, L., J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Advanced Materials, Vol. 27, No. 37, 5567-5572, 2015.
doi:10.1002/adma.201502052

13. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2015.
doi:10.1021/acs.nanolett.5b02901

14. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hbn-bp-hbn nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
doi:10.1002/adma.201601736

15. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 2016.

16. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 2017.

17. Sabaawi, A., C. Tsimenidis, and B. Sharif, "Analysis and modeling of infrared solar rectennas,", Vol. 19, No. 3, 9 000 208-9 000 208, May 2013.

18. Gadalla, M., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 2014.

19. Feuillet-Palma, C., Y. Todorov, A. Vasanelli, and C. Sirtori, "Strong near field enhancement in THz nano-antenna arrays," Scientific Reports, Vol. 3, 2013.

20. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173 903-173 903, 2012.
doi:10.1063/1.4764054

21. Almoneef, T. S. and O. M. Ramahi, "Metamaterial electromagnetic energy harvester with near unity efficiency," Applied Physics Letters, Vol. 106, No. 15, 153902, 2015.
doi:10.1063/1.4916232

22. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negativeindex plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, Jan. 2009. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.79.045131.
doi:10.1103/PhysRevB.79.045131

23. Wang, B.-X., L.-L. Wang, G.-Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photonics Technology Letters, Vol. 26, No. 2, 111-114, Jan. 2014.
doi:10.1109/LPT.2013.2289299

24. Xiong, X., Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, "Polarizationdependent perfect absorbers/re ectors based on a three-dimensional metamaterial," Phys. Rev. B, Vol. 88, 115105, Sep. 2013. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.88.115105.
doi:10.1103/PhysRevB.88.115105

25. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly exible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015. [Online], Available: http://dx.doi.org/10.1063/1.4929449.
doi:10.1063/1.4929449

26. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Opt. Lett., Vol. 38, No. 23, 4988-4990, Dec. 2013. [Online], Available: http://ol.osa.org/abstract.cfm?FURI=ol-38-23-4988.
doi:10.1364/OL.38.004988

27. Yahiaoui, R., K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Opt. Lett., Vol. 40, No. 13, 3197-3200, Jul. 2015. [Online], Available: http://ol.osa.org/abstract.cfm?URI=ol-40-13-3197.
doi:10.1364/OL.40.003197

28. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, May 2010. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.104.207403.
doi:10.1103/PhysRevLett.104.207403

29. AlShareef, M. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 144, 223 101-223 105, 2013.
doi:10.1063/1.4846076

30. Shrekenhamer, D., W.-C. Chen, and W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett., Vol. 110, 177403, Apr. 2013.
doi:10.1103/PhysRevLett.110.177403

31. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, 063908, Aug. 2007. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.99.063908.
doi:10.1103/PhysRevLett.99.063908

32., CST STUDIO SUITE, “CST Computer Simulation Technology AG,” www.cst.com.

33. Ordal, M., L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099-1119, 1983.
doi:10.1364/AO.22.001099