Vol. 77
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-27
A Study on the Wireless Power Transfer Efficiency of Electrically Small, Perfectly Conducting Electric and Magnetic Dipoles
By
Progress In Electromagnetics Research C, Vol. 77, 111-121, 2017
Abstract
This paper presents a general theoretical analysis of the Wireless Power Transfer (WPT) efficiency that exists between electrically short, Perfect Electric Conductor (PEC) electric and magnetic dipoles, with particular relevance to near-field applications. The figure of merit for the dipoles is derived in closed-form, and used to study the WPT efficiency as the criteria of interest. The analysis reveals novel results regarding the WPT efficiency for both sets of dipoles, and describes how electrically short perfectly conducting dipoles can achieve efficient WPT over distances that are considerably greater than their size.
Citation
Charles Luke Moorey, and William Holderbaum, "A Study on the Wireless Power Transfer Efficiency of Electrically Small, Perfectly Conducting Electric and Magnetic Dipoles," Progress In Electromagnetics Research C, Vol. 77, 111-121, 2017.
doi:10.2528/PIERC17062304
References

1. Ramrakhyani, A. K., S. Member, and S. Mirabbasi, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 1, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782

2. Kiani, M., U.-M. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 99, No. 6, 1, Jul. 2011.

3. Choi, J., Y.-H. Ryu, D. Kim, N. Y. Kim, C. Yoon, Y.-k. Park, and S. Kwon, "Design of high efficiency wireless charging pad based on magnetic resonance coupling," 9th European Radar Conference (EuRAD), 590-593, 2012.

4. Wu, P., F. Bai, Q. Xue, X. Liu, and S. Y. R. Hui, "Use of frequency-selective surface for suppressing radio-frequency interference from wireless charging pads," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 3969-3977, 2014.
doi:10.1109/TIE.2013.2284136

5. Eberle, W. and F. Musavi, "Overview of wireless power transfer technologies for electric vehicle battery charging," IET Power Electronics, Vol. 7, No. 1, 60-66, Jan. 2014.
doi:10.1049/iet-pel.2013.0047

6. Li, S. and C. Mi, "Wireless power transfer for electric vehicle applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. Pp, No. 99, 1, 2014.

7. Park, C., S. Member, S. Lee, G.-H. Cho, S. Member, C. T. Rim, and A. O. C. Configuration, "Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils," IEEE Transactions on Power Electronics, Vol. 30, No. 2, 817-827, 2015.
doi:10.1109/TPEL.2014.2310232

8. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-85, New York, N.Y., Jul. 2007.
doi:10.1126/science.1143254

9. Brown, W. C., "The history of wireless power transmission," Solar Energy, Vol. 56, No. 1, 3-21, 1996.
doi:10.1016/0038-092X(95)00080-B

10. Huang, L., V. Pop, R. de Francisco, R. Vullers, G. Dolmans, H. de Groot, and K. Imamura, "Ultra low power wireless and energy harvesting technologies — An ideal combination," 2010 IEEE International Conference on Communication Systems, 295-300, Nov. 2010.

11. Popovic, Z., E. A. Falkenstein, D. Costinett, and R. Zane, "Low-power far-field wireless powering for wireless sensors," Proceedings of the IEEE, Vol. 101, No. 6, 1397-1409, 2013.
doi:10.1109/JPROC.2013.2244053

12. Lee, J. and S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3442-3449, 2010.
doi:10.1109/TAP.2010.2071351

13. Mur-miranda, O., G. Fanti, Y. Feng, K. Omanakuttan, R. Ongie, A. Setjoadi, and F. W. Olin, Wireless Power Transfer Using Weakly Coupled Magnetostatic Resonators, 4179-4186, 2010.

14. Warnick, K., B. Gottula, S. Shrestha, and J. Smith, "Optimizing power transfer efficiency and bandwidth for near field communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 927-933, 2013.
doi:10.1109/TAP.2012.2220325

15. Poon, A., S. O’Driscoll, and T. Meng, "Optimal frequency for wireless power transmission into dispersive tissue," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1739-1750, May 2010.
doi:10.1109/TAP.2010.2044310

16. Moorey, C., W. Holderbaum, and B. Potter, "Investigation of high-efficiency wireless power transfer criteria of resonantly-coupled loops and dipoles through analysis of the figure of merit," Energies, Vol. 8, No. 10, 11 342-11 362, 2015.
doi:10.3390/en81011342

17. Urzhumov, Y. and D. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Physical Review B, Vol. 83, No. 20, 1-23, 2011.
doi:10.1103/PhysRevB.83.205114

18. Lipworth, G., J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, "Magnetic metamaterial superlens for increased range wireless power transfer," Scientific Reports, Vol. 4, 3642, 2014.

19. Zhong, W., C. K. Lee, and S. Y. Ron Hui, "General analysis on the use of tesla’s resonators in domino forms for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 261-270, 2013.
doi:10.1109/TIE.2011.2171176

20. Ahn, D. and S. Hong, "A study on magnetic field repeaters in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 360-371, 2013.
doi:10.1109/TIE.2012.2188254

21. Garnica, J., J. Casanova, and J. Lin, "High efficiency midrange wireless power transfer system," 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Ap, Vol. 5, 73-76, 2011.
doi:10.1109/IMWS.2011.5877094

22. Orfanidis, S. J., Electromagnetic Waves and Antennas, Online, New Jersey, 2014.

23. Hammond, P., "Applied Electromagnetism," Pergamon Press, New York, 1971.

24. Grant, I. S. and W. R. Phillips, Electromagnetism, 3rd Ed., John Wiley & Sons, 2003.

25. Li, L.-W., M.-S. Leong, P.-S. Kooi, and T.-S. Yeo, "Exact solutions of electromagnetic fields in both near and far zones radiated by thin circular-loop antennas: A general representation," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 12, 1741-1748, 1997.
doi:10.1109/8.650191

26. Drabowitch, S., A. Papiernik, H. Griffiths, and J. Encinas, Modern Antennas, Chapman and Hall, 1998.
doi:10.1007/978-1-4757-2758-6

27. Karalis, A., J. Joannopoulos, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, Vol. 323, No. 1, 34-48, Jan. 2008.
doi:10.1016/j.aop.2007.04.017

28. Dragoman, M., M. Aldrigo, A. Dinescu, D. Dragoman, and A. Costanzo, "Towards a terahertz direct receiver based on graphene up to 10THz," Journal of Applied Physics, Vol. 115, No. 4, 044307, Jan. 2014.
doi:10.1063/1.4863305

29. Zhang, G., H. Yu, L. Jing, J. Li, Q. Liu, and X. Feng, "Wireless power transfer using high temperature superconducting pancake coils," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 3, 3-7, 2013.

30. Sedwick, R. J., "Long range inductive power transfer with superconducting oscillators," Annals of Physics, Vol. 325, No. 2, 287-299, Feb. 2010.
doi:10.1016/j.aop.2009.08.011