Vol. 83
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-24
Complementary Split Ring Resonator for Isolation Enhancement in 5G Communication Antenna Array
By
Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018
Abstract
A square-shaped complementary split ring resonator (CSRR) filtering structure for isolation improvement is presented in this paper. The proposed research work investigates the design and development of a simple and compact CSRR structure. In order to verify the performance of the proposed filtering element and improve the isolation among the closely placed antenna elements, arrays of configured CSRR structures are implemented between two antenna elements. An array of configured CSRR elements has been integrated with the printed antenna on the top and bottom layers. The proposed filtering elements offer an enhancement in isolation by 25 dB as compared to the simple array. The entire configuration has been simulated using the Ansoft HFSS simulator. Finally, the proposed design is fabricated and experimentally validated. In the experiment, coupling suppression of -51 dB at the operating frequency is successfully achieved, resulting in a recovery of the array pattern. The proposed antenna is highly efficient, which is suitable to be utilized for 5G communication.
Citation
Raghuraman Selvaraju, Mohd Haizal Jamaluddin, Muhamad Ramlee Kamarudin, Jamal Nasir, and Muhammad Hashim Dahri, "Complementary Split Ring Resonator for Isolation Enhancement in 5G Communication Antenna Array," Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018.
doi:10.2528/PIERC18011019
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, 2016.

2. Hansen, R. C., Microwave Scanning Antennas, R. C. Hansen (ed.), Vol. 1, Academic Press, Apertures, 1964.

3. Gupta, I. and A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, 1983.
doi:10.1109/TAP.1983.1143128

4. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2894-2902, 2010.
doi:10.1109/TAP.2010.2052560

5. Pozar, D., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1191-1196, 1982.
doi:10.1109/TAP.1982.1142934

6. Bamford, L., J. James, and A. Fray, "Minimising mutual coupling in thick substrate microstrip antenna arrays," Electronics Letters, Vol. 33, No. 8, 648-650, 1997.
doi:10.1049/el:19970448

7. Su, T. and H. Ling, "On modeling mutual coupling in antenna arrays using the coupling matrix," Microwave and Optical Technology Letters, Vol. 28, No. 4, 231-237, 2001.
doi:10.1002/1098-2760(20010220)28:4<231::AID-MOP1004>3.0.CO;2-P

8. Huang, Z., C. A. Balanis, and C. R. Birtcher, "Mutual coupling compensation in UCAs: Simulations and experiment," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3082-3086, 2006.
doi:10.1109/TAP.2006.883989

9. Nasir, J., M. H. Jamaluddin, M. R. Kamarudin, Y.-C. Lo, R. Selvaraju, et al. "A four-eleme linear dielectric resonator antenna array for beamforming applications with compensation of mutual coupling," IEEE Access, Vol. 4, 6427-6437, 2016.
doi:10.1109/ACCESS.2016.2614334

10. Segovia-Vargas, D., R. Martin-Cuerdo, and M. Sierra-Perez, "Mutual coupling effects correction in microstrip arrays for Direction-Of-Arrival (DOA) estimation," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 149, No. 2, 113-118, 2002.
doi:10.1049/ip-map:20020232

11. Pasala, K. M. and E. M. Friel, "Mutual coupling effects and their reduction in wideband direction of arrival estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 4, 1116-1122, 1994.
doi:10.1109/7.328785

12. Steyskal, H. and J. S. Herd, "Mutual coupling compensation in small array antennas," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 12, 1971-1975, 1990.
doi:10.1109/8.60990

13. Jamaluddin, M. H., R. Gillard, R. Sauleau, and M.-A. Milon, "Perturbation technique to analyze mutual coupling in reflectarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 697-700, 2009.
doi:10.1109/LAWP.2009.2024336

14. Huang, Q., H. Zhou, J. Bao, and X. Shi, "Calibration of mutual coupling effect for adaptive arrays composed of circularly polarized microstrip antennas," Electromagnetics, Vol. 34, No. 5, 392-401, 2014.
doi:10.1080/02726343.2014.910371

15. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

16. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact Electromagnetic-Bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

17. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, 2008.
doi:10.1109/TAP.2008.923306

18. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

19. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z.Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microwaves, Antennas & Propagation, Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154

20. Wei, K., J. Li, L. Wang, Z. Xing, and R. Xu, "S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling," Electronics Letters, Vol. 52, No. 15, 1288-1290, 2016.
doi:10.1049/el.2016.0667

21. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 2017.

22. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meanderline resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156

23. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

24. Khaleel, H. R., H. M. Al-Rizzo, and A. Isaac, "Mutual coupling reduction between flexible mimo antennas," WIT Transactions on State-of-the-art in Science and Engineering, Vol. 82, 105, 2014.
doi:10.2495/978-1-84564-986-9/006

25. Hafezifard, R., M. Naser-Moghadasi, J. R. Mohassel, and R. Sadeghzadeh, "Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 40-43, 2016.

26. Ramaraj, M., S. Raghavan, S. Bose, and S. Kumar, "Elliptical split ring resonator: Mathematical analysis, HFSS modeling and genetic algorithm optimization," PIERS Proceedings, 631-635, Moscow, Russia, Aug. 19-23, 2012.

27. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

28. Qamar, Z., L. Riaz, M. Chongcheawchamnan, S. A. Khan, and M. F. Shafique, "Slot combined complementary split ring resonators for mutual coupling suppression in microstrip phased arrays," IET Microwaves, Antennas & Propagation, Vol. 8, No. 15, 1261-1267, 2014.
doi:10.1049/iet-map.2013.0541

29. Shafique, M. F., Z. Qamar, L. Riaz, R. Saleem, and S. A. Khan, "Coupling suppression in densely packed microstrip arrays using metamaterial structure," Microwave and Optical Technology Letters, Vol. 57, No. 3, 759-763, 2015.
doi:10.1002/mop.28943

30. Capolino, F., Theory and Phenomena of Metamaterials, CRC press, 2009.
doi:10.1201/9781420054262

31. Pendry, J. B., A. J. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

32. Hsue, C.-W., Y.-W. Chang, and S.-L. Jang, "Comments on babinet’s principle," Forum for Electromagnetic Research Methods and Application Tecchnologies (FERMAT), Vol. 16, No. 3, Jul.-Aug. 2016.

33. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martın, and M. Sorolla, "Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

34. Vendik, I., O. Vendik, and M. Odit, Theory and Phenomena of Metamaterials, Metamaterial Handbook, F. Cappolino (ed.), 2009.

35. Bahl, I. J. and P. Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons, 2003.

36. Penciu, R., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and C. Soukoulis, "Multigap individual and coupled split-ring resonator structures," Optics Express, Vol. 16, No. 22, 18 131-18 144, 2008.
doi:10.1364/OE.16.018131

37. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

38. Hsieh, F.-J., C.-L. Chang, and W.-C. Wang, "Determination of effective constitutive parameters, material boundaries and properties of SRR-rod and fishnet metamaterials by Drude/Lorentz dispersion models," PIERS Proceedings, 136-140, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.