Vol. 85
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-23
A Compact Conformal Printed Dipole Antenna for 5G Based Vehicular Communication Applications
By
Progress In Electromagnetics Research C, Vol. 85, 191-208, 2018
Abstract
A novel and compact conformal printed dipole antenna with geometrical modifications in ground plane is proposed in this paper for 5G based vehicular communications and IoT applications. The proposed antenna consists of a printed dipole as defected ground structure and a staircase structured offset fed integrated balun to attain wideband operation. It yields a better -10 dB impedance bandwidth of 17.65 GHz and 2.24 GHz over the frequency ranges 24.3 to 41.95 GHz and 49.91 to 52.15 GHz. Antenna projects the peak gain of 6.81 dB with 98.82% of peak radiation efficiency. The measured results of the proposed model are in good agreement with the simulation obtained from HFSS. The conformal models of the proposed antenna are developed to embed the antenna in different curved surfaces on vehicular body. The analyzed conformal characteristics of the antenna support excellent constant reflection coefficient with respect to planar structure of the antenna over the operating band at different angles.
Citation
Yalavarthi Usha Devi, Mulpuri Santhi Sri Rukmini, and Boddapati Taraka Phani Madhav, "A Compact Conformal Printed Dipole Antenna for 5G Based Vehicular Communication Applications," Progress In Electromagnetics Research C, Vol. 85, 191-208, 2018.
doi:10.2528/PIERC18041906
References

1. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1617-1655, Third Quarter 2016.
doi:10.1109/COMST.2016.2532458

2. Wang, T., G. Li, B. Huang, Q. Miao, J. Fang, P. Li, H. Tan, W. Li, J. Ding, J. Li, and Y. Wang, "Spectrum analysis and regulations for 5G," 5G Mobile Communications, W. Xiang et al. (eds.), 27-50, Springer International Publishing Switzerland, 2017.

3. Choi, J., V. Va, N. Gonz´alez-Prelcic, R. Daniels, C. R. Bhat, R. W. Heath, and Jr., "Millimeter wave vehicular communication to support massive automotive sensing," IEEE Communications Magazine, Vol. 54, No. 12, 160-167, December 2016.
doi:10.1109/MCOM.2016.1600071CM

4. Dong, P., T. Zheng, S. Yu, H. Zhang, and X. Yan, "Enhancing vehicular communication using 5G-enabled smart collaborative networking," IEEE Wireless Communications, Vol. 24, No. 6, 72-79, December 2017.
doi:10.1109/MWC.2017.1600375

5. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications," Microwave and Optical Technology Lett., Vol. 58, No. 9, 2148-2151, September 2016.
doi:10.1002/mop.29994

6. Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
doi:10.2528/PIERC16022902

7. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, December 2017.
doi:10.1109/TAP.2017.2759899

8. Alhalabi, R. and G. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, October 2008.
doi:10.1109/TAP.2008.929506

9. Ta, S. X. and I. Park, "Broadband printed-dipole antennas for millimeter wave applications," Proc. Int. Symp. IEEE Radio Wireless, 65-67, Phoenix, AZ, USA, January 2017.

10. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2183-2186, May 2017.
doi:10.1109/LAWP.2017.2703850

11. Jilani, S. F. and A. Alomainy, "A multiband millimeter-wave two-dimensional array based on enhanced Franklin antenna for 5G wireless systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2983-2986, September 2017.
doi:10.1109/LAWP.2017.2756560

12. Yang, B., "A compact integrated bluetooth UWB dual-band notch antenna for automotive communication," International Journal of Electronics and Communications, Vol. 80, 104-113, 2017.
doi:10.1016/j.aeue.2017.06.031

13. Madhav, B. T. P., T. Anilkumar, and K. Sarat, "Transparent and conformal wheel-shaped fractal antenna for vehicular communication applications," International Journal of Electronics and Communications, Vol. 91, 1-10, 2018.
doi:10.1016/j.aeue.2018.04.028

14. Ramya, R. and T. Rama Rao, "Design and performance analysis of a penta-band spiral antenna for vehicular communications," Wireless Pers. Commun., Springer, March 2017.

15. Mondal, T., S. Samanta, R. Ghatak, and S. R. Bhadra Chaudhuri, "A novel tri-band hexagonal microstrip patch antenna using modified Sierpinski fractal for vehicular communication," Progress In Electromagnetics Research C, Vol. 57, 25-34, 2015.
doi:10.2528/PIERC15021105

16. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, 1130-1136, March 2016.
doi:10.1109/TVT.2015.2409886

17. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., New Jersey, Wiley, 2005.

18. Kraus, J. D., R. J. Marhefka, and A. S. Khan, Antennas and Wave Propagation, 4th Ed., Mc-Graw Hill, 2015.