Vol. 85
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-06
A Novel PSO-Based Transfer Efficiency Optimization Algorithm for Wireless Power Transfer
By
Progress In Electromagnetics Research C, Vol. 85, 63-75, 2018
Abstract
To improve the power transfer efficiency in a magnetically-coupled resonant wireless power transfer (MCR-WPT) system, an efficient particle swarm optimization (PSO) algorithm based on the change of particle swarm scale is proposed. The transfer efficiency and frequency are used as the fitness function and particle position, respectively. Therefore, the optimal frequency can be obtained by adjusting the position of particle. Five types of optimizing process are presented and compared with the traditional PSO algorithm. It is found that the proposed method has faster convergence speed than the traditional PSO algorithm. Additionally, the proposed five types of optimizing process with different regulation parameters are investigated. The results indicate that Type 2 with n=3 is the best alternative in finding the optimal frequency with the fastest speed of convergence. Experimental prototypes have been set up for validation.
Citation
Meng Wang, Jing Feng, Yanyan Shi, Minghui Shen, and Jianwei Jing, "A Novel PSO-Based Transfer Efficiency Optimization Algorithm for Wireless Power Transfer," Progress In Electromagnetics Research C, Vol. 85, 63-75, 2018.
doi:10.2528/PIERC18042001
References

1. Lee, G., B. H. Waters, Y. G. Shin, J. R. Smith, and W. S. Park, "A reconfigurable resonant coil for range adaptation wireless power transfer," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 2, 624-632, 2016.
doi:10.1109/TMTT.2015.2512578

2. Liu, X. C. and G. F. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, 2016.

3. Sample, A., D. Meyer, and J. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

4. Fu, M., T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 3, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422

5. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 295-304, 2015.
doi:10.1109/TMTT.2014.2365475

6. Mi, C. C., G. Buja, Y. C. Su, and C. T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Trans. Ind. Electron., Vol. 63, No. 10, 6533-6545, 2016.
doi:10.1109/TIE.2016.2574993

7. Talla, V. and J. Smith, "An experimental technique for design of practical wireless power transfer systems," IEEE Int. Circuits Syst. Symp., 2041-2044, 2014.

8. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Trans. Ind. Electron., Vol. 64, No. 4, 1774-1783, 2014.
doi:10.1109/TIE.2013.2263780

9. Wang, J., S. L. Ho, W. Fu, C. T. Kit, and M. Sun, "Finite-element analysis and corresponding experiments of resonant energy transfer for wireless transmission devices," IEEE Trans. Magnetics, Vol. 47, No. 5, 1074-1077, 2011.
doi:10.1109/TMAG.2010.2078492

10. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L.-W. Lee, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835

11. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Ant. Wireless Propag. Lett., Vol. 13, No. 4, 400-402, 2014.
doi:10.1109/LAWP.2014.2307924

12. Zhang, Y. M., Z. M. Zhao, and K. Chen, "Frequency splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, 2014.
doi:10.1109/TIA.2013.2295007

13. Lan, J., H. Tang, and G. Xin, "Frequency splitting analysis of wireless power transfer system based on T-type transformer model," Electron. Electrical Eng., Vol. 19, No. 10, 109-113, 2013.

14. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

15. Kim, Kim, D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Trans. Ind. Electron., Vol. 62, No. 5, 2807-2813, 2015.
doi:10.1109/TIE.2014.2365751

16. Fu, M., H. Yin, X. Zhu, and C. Ma, "Analysis and tracking of optimal load in wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 7, 3952-3963, 2015.
doi:10.1109/TPEL.2014.2347071

17. Vasilev, I., J. Lindstrand, V. Plicanic, and H. Sjoland, "Experimental investigation of adaptive impedance matching for a MIMO terminal with CMOS-SOI tuners," IEEE Trans. Micro. Theory Tech., Vol. 64, No. 5, 1622-1622, 2016.
doi:10.1109/TMTT.2016.2546244

18. Koh, K. E., T. C. Beh, T. Imura, and Y. Hori, "Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling," IEEE Trans. Ind. App., Vol. 50, No. 3, 2061-2070, 2014.
doi:10.1109/TIA.2013.2287310

19. Heebl, J. D., E. M. Thomas, and R. P. Pennoand A. Grbic, "Comprehensive analysis and measurement of frequency-tuned and impedance-tuned wireless non-radiative power-transfer systems," IEEE Antennas Propag. Mag., Vol. 56, No. 4, 44-60, 2014.
doi:10.1109/MAP.2014.6931657

20. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 61, No. 1, 350-359, 2013.
doi:10.1109/TIE.2011.2177611

21. Li, H., H. Zhang, C. Zhang, P. Li, and R. Cropp, "A novel unsupervised levy flight particle swarm optimization (ULPSO) method for multispectral remote-sensing image classification," International Journal of Remote Sensing, Vol. 38, No. 23, 6970-6992, 2017.
doi:10.1080/01431161.2017.1368102

22. Jabri, I., A. Bouallegue, and F. Ghodbane, "Misalignment controller in wireless battery charger for electric vehicle based on MPPT method and metaheuristic algorithm," Wireless Netw., Vol. 10, 1-22, 2017.

23. Schuetz, M., A. Georgiadis, A. Collado, and G Fischer, "A particle swarm optimizer for tuning a software-defined, highly configurable wireless power transfer platform," Wireless Power Transfer Conference, 1-24, 2015.

24. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
doi:10.1109/TIE.2016.2569459

25. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Lett., Vol. 75, 13-19, 2018.