Vol. 86
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-08-22
Design of High Gain Lens Antenna by Using 100% Transmitting Metamaterials
By
Progress In Electromagnetics Research C, Vol. 86, 167-176, 2018
Abstract
A transmitting lens antenna using Huygens matematerials is proposed. The type of metamaterial has a 100% transmission. For obtaining a high gain antenna, a patch antenna is placed at the focal point of the metasurface as a feed source, and then quasi-spherical wave can be transformed to plane wave. As demonstration of the concept, a lens antenna, working at frequency of 10 GHz is designed, fabricated and measured. Numerical and experimental results agree well with each other. The measured results show that the gain has been enhanced about 11.2 dB.
Citation
Qiu-Rong Zheng, Bi-Cheng Lin, and Bing-Han Zhou, "Design of High Gain Lens Antenna by Using 100% Transmitting Metamaterials," Progress In Electromagnetics Research C, Vol. 86, 167-176, 2018.
doi:10.2528/PIERC18060203
References

1. Yu, N. F., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-338, 2011.
doi:10.1126/science.1210713

2. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2013.
doi:10.1126/science.1214686

3. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens’ surface: Tailoring wave fronts with reflectionless sheet ," Phys. Rev. Lett., Vol. 110, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401

4. Xu, H. X., G. M. Wang, T. Cai, J. Xiao, and Y. Q. Zhuang, "Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection," Opt. Express, Vol. 24, 27836-27848, 2016.
doi:10.1364/OE.24.027836

5. Wong, J. P. S., M. Selvanayagam, and G. V. Eleftheriades, "Polarization considerations for scalar Huygens metasurfaces and characterization for 2-D refraction," IEEE Trans. Microw. Theory Techn., Vol. 63, 913-924, 2015.
doi:10.1109/TMTT.2015.2392931

6. Pfeiffer, C., N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, "Efficient light bending with isotropic metamaterial Huygens’ surfaces," Nano Lett., Vol. 14, 2491-2497, 2014.
doi:10.1021/nl5001746

7. Pors, A., O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, "Gap plasmon-based metasurfaces for total control of reflected light," Sci. Rep., Vol. 3, 2155, 2013.
doi:10.1038/srep02155

8. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Independent controls of differently-polarized reflected waves by anisotropic metasurfaces," Sci. Rep., Vol. 5, 9605, 2015.
doi:10.1038/srep09605

9. Farahani, M. F. and H. Mosallaei, "Birefringent reflectarray metasurface for beam engineering in infrared," Opt. Lett., Vol. 38, 462-464, 2013.
doi:10.1364/OL.38.000462

10. Sun, S. L., Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nat. Mater., Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292

11. Sun, W., Q. He, S. Sun, and L. Zhou, "High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations," Light Sci. Appl., Vol. 5, e16003, 2016.
doi:10.1038/lsa.2016.3

12. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Appl. Phys. Lett., Vol. 108, 121903, 2016.
doi:10.1063/1.4944789

13. Yu, S., L. Li, G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, 241901, 2016.
doi:10.1063/1.4953786

14. Huang, Y. W., W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Lett., Vol. 15, 3122-3127, 2015.
doi:10.1021/acs.nanolett.5b00184

15. Huang, L., X. Chen, H. M. hlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nat. Commun., Vol. 4, 2808, 2013.
doi:10.1038/ncomms3808

16. Chen, W. T., K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, "High-efficiency broadband meta-hologram with polarization-controlled dual images," Nano Lett., Vol. 14, 225-230, 2014.
doi:10.1021/nl403811d

17. Wen, D., F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, "Helicity multiplexed broadband metasurface holograms," Nat. Commun., Vol. 6, 8241, 2015.
doi:10.1038/ncomms9241

18. Zheng, G., H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nat. Nanothchnol., Vol. 10, 296-298, 2015.
doi:10.1038/nnano.2015.26

19. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

20. Li, X., S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012.
doi:10.1364/OL.37.004940

21. Wan, X., X. Shen, Y. Luo, and T. J. Cui, "Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface," Laser Photonics Rev., Vol. 8, 757-765, 2014.
doi:10.1002/lpor.201400023

22. Milligan, T. A., Modern Antenna Design, 2nd Ed., Willey, NJ, Hobeken, 2005.
doi:10.1002/0471720615

23. Cutler, C. C., "Parabolic-antenna design for microwaves," Proc. IRE, Vol. 35, 1284-1294, 1947.
doi:10.1109/JRPROC.1947.233571

24. Vigueras, M. G., J. L. Gomez-Tornero, G. Goussetis, A. R. Weily, and Y. J. Guo, "Efficient synthesis of 1-D Fabry-Perot antennas with low side-lobe levels," IEEE Antennas Wireless Propag. Lett., Vol. 11, 869-872, 2012.
doi:10.1109/LAWP.2012.2210182

25. Li, H. P., G. M. Wang, H. X. Xu, T. Cai, and J. G. Liang, "X-band phase-gradient metasurface for high-gain lens antenna application," IEEE Transactions on Antennas and Propagation, Vol. 63, 5144-5149, 2015.
doi:10.1109/TAP.2015.2475628

26. González-Ovejero, D., G. Minatti, G. Chattopadhyay, and S. Maci, "Multibeam by metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2923-2930, 2017.
doi:10.1109/TAP.2017.2670622