Vol. 86
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-08-14
Diagnostic Method of Rotor Cracks and Local Demagnetization by Using the Measuring Coils for the Permanent Magnet Synchronous Machines
By
Progress In Electromagnetics Research C, Vol. 86, 123-136, 2018
Abstract
This paper proves that the use of conventional diagnostic methods of rotor crack and local demagnetization based on the harmonic analysis of the output voltage or counter-electromotive force is effective only with a certain ratio of the number of slots and poles. This statement was proved experimentally. The diagnostic method of the rotor cracks and local demagnetization which is universal for all types of windings and the number of slots of 2-pole synchronous electric machines with permanent magnets is proposed. The mathematical apparatus for the implementation of the proposed method is developed and verified with the help of FEM and experimental studies. All the experimental studies have been carried out for various rotor magnetic systems and a different number of stator slots.
Citation
Flur R. Ismagilov, Viacheslav Vavilov, Denis Gusakov, Aibulat Kh. Miniyarov, and Valentina V. Ayguzina, "Diagnostic Method of Rotor Cracks and Local Demagnetization by Using the Measuring Coils for the Permanent Magnet Synchronous Machines," Progress In Electromagnetics Research C, Vol. 86, 123-136, 2018.
doi:10.2528/PIERC18070205
References

1. Borisavljevic, A., H. Polinder, and J. Ferreira, "On the speed limits of permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 220-227, 2010.
doi:10.1109/TIE.2009.2030762

2. Gieras, J. F., "High speed machines," Advancements in Electric Machines (Power Systems), 81-113, 2008.
doi:10.1007/978-1-4020-9007-3_4

3. Ganev, E., "Selecting the best electric machines for electrical power-generation systems: High-performance solutions for aerospace More electric architectures," IEEE Electrification Magazine, Vol. 2, No. 3, 13-22, Dec. 2014.
doi:10.1109/MELE.2014.2364731

4. Liu, K., Q. Zhang, J. Chen, Z. Q. Zhu, and J. Zhang, "Online multi-parameter estimation of non-salient pole PM synchronous machines with temperature variation tracking," IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, 1776-1788, May 2011.
doi:10.1109/TIE.2010.2054055

5. Liu, K. and Z. Q. Zhu, "Online estimation of rotor flux linkage and voltage source inverter nonlinearity in permanent magnet synchronous machine drives," IEEE Transactions on Power Electronics, Vol. 29, No. 1, 418-427, Jan. 2014.
doi:10.1109/TPEL.2013.2252024

6. Vinson, G., M. Combacau, T. Prado, and P. Ribot, "Permanent magnets synchronous machines fault detection and identification," IECON 2012 --- 38th Annual Conference on IEEE Industrial Electronics Society, 3925-3930, Oct. 2012.

7. Haylock, J. A., B. C. Mecrow, A. G. Jack, and D. J. Atkinson, "Operation of fault tolerant machines with winding failures," IEEE Transactions on Energy Conversion, Vol. 14, No. 4, 1490-1495, 1999.
doi:10.1109/60.815095

8. Mecrow, B. C., A. G. Jack, J. A. Haylock, and J. Coles, "Fault-tolerant permanent magnet machine drives," IEE Proceedings --- Electric Power Applications, Vol. 143, No. 6, 437-442, 1996.
doi:10.1049/ip-epa:19960796

9. Mitcham, A. J., G. Antonopoulos, and J. J. A. Cullen, "Implications of shorted turn faults in bar wound PM machines," IEE Proceedings --- Electric Power Applications, Vol. 151, No. 6, 651-657, 2004.
doi:10.1049/ip-epa:20040686

10. Liu, K., Z. Q. Zhu, and D. A. Stone, "Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets," IEEE Transactions on Industrial Electronics, Vol. 60, No. 12, 5902-5913, Dec. 2013.
doi:10.1109/TIE.2013.2238874

11. Jabbar, M. A., J. Dong, and Z. Liu, "Determination of machine parameters for internal permanent magnet synchronous motors," Second International Conference on Power Electronics, Machines and Drives, Vol. 2, 805-810, 2004.

12. Underwood, S. and I. Husain, "Online parameter estimation and adaptive control of permanentmagnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, 2435-2443, Jul. 2010.
doi:10.1109/TIE.2009.2036029

13. Hamida, M. A., J. D. Leon, A. Glumineau, and R. Boisliveau, "An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification," IEEE Transactions on Industrial Electronics, Vol. 60, No. 2, 739-748, Feb. 2013.
doi:10.1109/TIE.2012.2206355

14. Liu, K. and Z. Q. Zhu, "Position-offset-based parameter estimation using the adaline NN for condition monitoring of permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, 2372-2383, Apr. 2015.
doi:10.1109/TIE.2014.2360145

15. Ebrahimi, B. M., J. Faiz, and M. J. Roshtkhari, "Static-, dynamic- and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 56, No. 11, 4727-4739, Nov. 2009.
doi:10.1109/TIE.2009.2029577

16. Ruiz, J. R., J. A. Rosero, A. G. Espinosa, and L. Romeral, "Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary condition," IEEE Transactions on Magnetics, Vol. 45, No. 7, 2961-2969, Jul. 2009.
doi:10.1109/TMAG.2009.2015942

17. Uresty, J. C., J. R. Riba, and L. Romeral, "A back-emf based method to detect magnet failures in PMSMs," IEEE Transactions on Magnetics, Vol. 49, No. 1, 591-598, Jan. 2013.
doi:10.1109/TMAG.2012.2207731

18. Leboeuf, N., T. Boileau, B. Nahid-Mobarakeh, G. Clerc, and F. Meibbody Tabar, "Real-time detection of interturn faults in PM drives using back-EMF estimation and residual analysis," IEEE Transactions on Industry Applications, Vol. 47, No. 6, 2402-2412, Nov.-Dec. 2011.
doi:10.1109/TIA.2011.2168929

19. Borisavljevic, A., Limits, Modeling and Design of High-speed Permanent Magnet Machines, 218, Springer-Verlag Berlin Heidelberg, 2013.

20. Yakupov, A. M., F. R. Ismagilov, I. H. Khayrullin, and V. E. Vavilov, "Method of designing high-speed generators for the biogas plant," International Journal of Renewable Energy Research, Vol. 6, No. 2, 447-454, 2016.

21. Uzhegov, N., E. Kurvinen, J. Nerg, J. T. Sopanen, and S. Shirinskii, "Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, Feb. 2016.
doi:10.1109/TIE.2015.2477797

22. Ismagilov, F. R., V. E. Vavilov, and R. D. Karimov, "Improving the efficiency of electrical high-RPM generators with permanent magnets and tooth winding," Progress In Electromagnetics Research M, Vol. 63, 93-105, 2018.
doi:10.2528/PIERM17082202

23. Ismagilov, F. R., V. Y. Vavilov, A. H. Miniyarov, A. M. Veselov, and V. V. Ayguzina, "Design, optimization and initial testing of a high-speed 5-kw permanent magnet generator for aerospace application," Progress In Electromagnetics Research C, Vol. 79, 225-240, 2017.
doi:10.2528/PIERC17091805

24. Ismagilov, F. R., V. E. Vavilov, D. V. Gusakov, and V. V. Ayguzina, "Eddy currents in the rotor shroud and permanent magnets of high-speed electric machines," International Review of Aerospace Engineering, Vol. 10, No. 6, Dec. 2017.

25. Ledovsky, A. N., Electric Machines with High-coercivity Permanent Magnets, 169, Energoatomizdat, Moscow, 1985.