Vol. 92
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-04-25
Common-Mode Suppression in Broadside Coupled Coplanar Waveguides
By
Progress In Electromagnetics Research C, Vol. 92, 113-121, 2019
Abstract
Differential signaling is used in digital circuitry and high speed communication links due to its lower level of radiation and lower susceptibility to interference. Signal skew, amplitude differences and unequal parasitic electric or magnetic coupling to nearby structures can lead to common-mode signals being present on differential communication links which can result in unwanted electromagnetic interference and crosstalk. Common-mode filtering is often employed to suppress common-mode signal propagation in order to mitigate against these negative effects. In this paper broadside coupled differential coplanar waveguides are used which provide effective differential transmission from dc through 40 GHz. Simulation and measurement show that dipole-like common-mode filtering elements placed between the broadside coupled traces offer common-mode suppression of more than 10 dB over bandwidths greater than 5 GHz. A design equation is developed which can be used to estimate filtering frequencies from filter dimensions through 30 GHz. Filters can be cascaded to broaden filtering around a single frequency to filter at multiple frequencies. Simulation based registration studies were conducted which show stable filtering performance in the presence of layer-to-layer misregistration up to 0.254 mm.
Citation
Yujie He, Joesph M. Faia, Michael Cracraft, and Edward Wheeler, "Common-Mode Suppression in Broadside Coupled Coplanar Waveguides," Progress In Electromagnetics Research C, Vol. 92, 113-121, 2019.
doi:10.2528/PIERC19011705
References

1. Wu, S.-J., C.-H. Tsai, T.-L. Wu, and T. Itoh, "A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure," IEEE Trans. Microw. Theory Techn., Vol. 57, 848-855, Apr. 2009.
doi:10.1109/TMTT.2009.2015087

2. Liu, W.-T., C.-H. Tsai, T.-W. Han, and T.-L. Wu, "An embedded common-mode suppression filter for GHz differential signals using periodic defect ground plane," IEEE Microw. Wireless Compon. Lett., Vol. 18, 248-250, May 2008.
doi:10.1109/LMWC.2008.918883

3. Weng, T.-W., C.-H. Tsai, C.-H. Chen, D.-H. Han, and T.-L. Wu, "Synthesis model and design of a Common-Mode Bandstop Filter (CM-BSF) with an all-pass characteristic for high-speed differential signals," IEEE Trans. Microw. Theory Techn., Vol. 62, 1647-1656, Aug. 2014.
doi:10.1109/TMTT.2014.2328314

4. Liu, Q., G. Li, V. Khilkevich, and D. Pommerenke, "Common-mode filters with interdigital fingers for harmonics suppression and lossy materials for broadband suppression," IEEE Trans. Electromagn. Compat., Vol. 57, 1740-1743, Dec. 2015.
doi:10.1109/TEMC.2015.2443126

5. Martın, F., J. Naqui, A. Fern´andez-Prieto, P. Velez, J. Bonache, J. Martel, and F. Medina, "The beauty of symmetry," IEEE Microw. Mag., 42-55, Jan./Feb. 2017.
doi:10.1109/MMM.2016.2616180

6. De Paulis, F., L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, "Design of a commonmode filter by using planar electromagnetic bandgap structures," IEEE Trans. Adv. Packag., Vol. 33, 994-1002, Nov. 2010.
doi:10.1109/TADVP.2010.2046167

7. De Paulis, F., M. Cracraft, D. Di Febo, M. H. Nisanci, S. Connor, B. Archambeault, and A. Orlandi, "EBG-based common-mode microstrip and stripline filter design: Experimental investigation of performances and crosstalk," IEEE Trans. Electromagn. Compat., Vol. 57, 996-1004, Oct. 2015.
doi:10.1109/TEMC.2015.2427915

8. Kodama, C., C. O’Daniel, J. Cook, F. de Paulis, M. Cracraft, S. Connor, A. Orlandi, and E. Wheeler, "Mitigating the threat of crosstalk and unwanted radiation when using electromagnetic bandgap structures to suppress common mode signal propagation in PCB differential interconnects," Proc. IEEE Int. Symp. Electromagn. Compat., 622-627, Dresden, Germany, Aug. 2015.

9. Cracraft, M. and S. Connor, "Mode-selective periodic transmission line filters to reduce radiated common-mode emissions," Proc. IEEE Int. Symp. Electromagn. Compat., 216-221, Ottawa, Canada, Jul. 2016.

10. Naqui, J., A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martın, "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and applications," IEEE Trans. Microw. Theory Techn., Vol. 60, 3023-3034, Oct. 2012.
doi:10.1109/TMTT.2012.2209675

11. Velez, P., J. Naqui, A. Fernandez-Prieto, M. Duran-Sindreu, J. Bonache, J. Martel, F. Medina, and F. Martın, "Differential bandpass filter with commo-mode suppression based on open split ring resonators and open complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 23, 22-24, Jan. 2013.
doi:10.1109/LMWC.2012.2236083

12. Sawyer, E., C. Kodama, C. O’Daniel, J. Cook, and E. Wheeler, "Using common-mode filtering structures with microstrip differential lines in a multilayer printed circuit board environment," IEEE European Microw. Conf., 1091-1094, Rome, Italy, Oct. 2014.

13. He, Y., Z. Silva, Z. Bergstedt, J. Faia, S. Van Hoosier, S. G. Kang, G. Shaffer, E. Wheeler, and M. Cracraft, "Common-mode filtering in multilayer printed circuit boards," Proc. IEEE Int. Symp. Electromagn. Compat., 288-292, Washington, DC, USA, Aug. 2017.

14. Bedair, S. S. and I. Wolff, "Fast and accurate analytic formulas for calculating the parameters of a general broadside-coupled coplanar waveguide for (M)MIC application," IEEE Trans. Microwave Theory Tech., Vol. 37, 843-850, May 1989.
doi:10.1109/22.17450

15. Kretch, B. and R. Collin, "Microstrip dispersion including anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 35, 710-718, Aug. 1987.
doi:10.1109/TMTT.1987.1133736

16., Keysight Technologies, Santa Rosa, CA, USA. Auto Fixture Removal (AFR), (2015) [Online], Available: http://na.support.keysight.com/plts/help/WebHelp/VNACalAndMeas/Auto Fixture Removal.htm, Accessed on: Apr. 20, 2018.

17., Keysight Technologies, Santa Rosa, CA, USA. Auto Fixture Removal (AFR), (2014) [Online], Available: http://na.support.keysight.com/vna/help/latest/S3 Cals/Auto Fixture Removal.htm,Accessed on: Apr. 20, 2018.

18. Shan, L., Y. Kwark, C. Baks, and M. Ritter, "Layer misregistration in PCB and its effects on signal propagation," Proc. Electronic Components and Techn. Conf., 605-611, Las Vegas, NV, USA, Jun. 2010.

19. Fesharaki, F., T. Djerafi, M. Chaker, and K. Wu, "Low-loss and low-dispersion transmission line over DC-to-THz spectrum," IEEE Trans. on Terahertz Science and Tech., Vol. 6, 611-618, Jul. 2016.
doi:10.1109/TTHZ.2016.2570009