Vol. 93

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-06-14

A Quantum MIMO Architecture for Antenna Wireless Digital Communications

By and Said Mikki
Progress In Electromagnetics Research C, Vol. 93, 143-156, 2019
doi:10.2528/PIERC19032404

Abstract

A general theoetical framework for MIMO digital wireless communications is proposed for sending classical M-ary information over quantum states instead of classical electromagnetic waves. The basic theory of quantum MIMO architecture suitable for spatial diversity application is proposed and analyzed. The fundamental design equations are derived and shown to be equivalent to a special constrained nonlinear optimization problem. The main advantage of the MIMO architecture is that it provides new resources for the system designer since using multiple Tx quantum antennas coupled with judicious choice of optimum positions for the multiple Rx quantum measurement operators can enhance the ability to realize quantum communication systems. Therefore, additional degrees of freedom are expected to become available in the proposed quantum MIMO systems. The proposed system is expected to be best physically realized using electromagnetic process in second-quantized (photon) states, ideally coherent or squeezed radiation states.

Citation


and Said Mikki, "A Quantum MIMO Architecture for Antenna Wireless Digital Communications," Progress In Electromagnetics Research C, Vol. 93, 143-156, 2019.
doi:10.2528/PIERC19032404
http://www.jpier.org/PIERC/pier.php?paper=19032404

References


    1. Lathi, B. P. and Z. Ding, Modern Digital and Analog Communication Systems, Oxford University Press, New York, 2009.

    2. Hampton, J. R., Introduction to MIMO Communications, Cambridge University Press, 2014.

    3. Marzetta, T. L., E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge University Press, 2016.
    doi:10.1017/CBO9781316799895

    4. Mikki, S. M. and Y. M. M. Antar, New Foundations for Applied Electromagnetics, Artech House, 2016.

    5. Helstrom, C. W., J. W. S. Liu, and J. P. Gordon, "Quantum-mechanical communication theory," Proc. IEEE, Vol. 58, No. 10, 1578-1598, 1970.
    doi:10.1109/PROC.1970.7983

    6. Kennedy, R. S., A near-optimum receiver for the binary coherent state quantum channel, Massachusetts Institute of Technology (MIT Research Laboratory of Electronics Quarterly Progress Report 108), Technical Report, Cambridge (MA), January 1973.

    7. Holevo, A. S., "Statistical decision theory for quantum systems," J. Multivar. Anal., Vol. 3, No. 4, 337-394, 1973.
    doi:10.1016/0047-259X(73)90028-6

    8. Yuen, H. P., R. Kennedy, and M. Lax, "Optimum testing of multiple hypotheses in quantum detection theory," IEEE Transactions on Information Theory, Vol. 21, No. 2, 125-134, 1975.
    doi:10.1109/TIT.1975.1055351

    9. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, 1976.

    10. Cariolaro, G., Quantum Communications, Springer International Publishing, Switzerland, 2015.

    11. Dirac, P. A. M., The Principles of Quantum Mechanics, 3rd Ed., Oxford UP, 1947.

    12. Von Neumann, J., The Mathematical Foundations of Quantum Mechanics, New Ed., Princeton University Press, 2018.

    13. Kato, K., M. Osaki, M. Sasaki, and O. Hirota, "Quantum detection and mutual information for QAM and PSK signals," IEEE Trans. Commun., Vol. 47, No. 2, 248-254, 1999.
    doi:10.1109/26.752130

    14. Vilnrotter, V. and C. W. Lau, Quantum detection and channel capacity using state-space optimization, NASA, Technical Report, Interplanetary Network Progress (IPN) Progress Report, 42148, February 2002.

    15. Vilnrotter, V. and C. W. Lau, Quantum detection theory for the free-space channel, NASA, Technical Report, Interplanetary Network Progress (IPN) Progress Report, 42146, August 2001.

    16. Eldar, Y. C., A. Megretski, and G. C. Verghese, "Optimal detection of symmetric mixed quantum states," IEEE Transactions on Information Theory, Vol. 50, No. 6, 1198-1207, 2004.
    doi:10.1109/TIT.2004.828070

    17. Vilnrotter, V. and C. W. Lau, Binary quantum receiver concept demonstration, NASA, Technical Report, Interplanetary Network Progress (IPN) Progress Report, 42165, May 2006.

    18. Assalini, A., G. Cariolaro, and G. Pierobon, "Efficient optimal minimum error discrimination of symmetric quantum states," Phys. Rev. A, Vol. 81, 012315, 2010.
    doi:10.1103/PhysRevA.81.012315

    19. Cariolaro, G., R. Corvaja, and G. Pierobon, "Compression of pure and mixed states in quantum detection," Global Telecommunications Conference, GLOBECOM, Vol. 2011, 15, IEEE, 2011.

    20. Holevo, A. S. and V. Giovannetti, "Quantum channels and their entropic characteristics," Rep. Prog. Phys., Vol. 75, No. 4, 046001, 2012.
    doi:10.1088/0034-4885/75/4/046001

    21. Glauber, R. J., Quantum Theory of Optical Coherence, Wiley, 2007.

    22. Klauder, J. R. and E. C. G. Sudarshan, Fundamentals of Quantum Optics, W. A. Benjamin, Inc., New York and Amsterdam, 1968.

    23. Merzbacher, E., Quantum Mechanics, 3rd Ed., Wiley, 1997.

    24. Garrison, J. C. and R. Y. Chiao, Quantum Optics, Oxford University Press, 2008.
    doi:10.1093/acprof:oso/9780198508861.001.0001

    25. Ou, Z. J., Quantum Optics for Experimentalists, 432, World Scientific, New Jersey, 2017.
    doi:10.1142/10453

    26. Imre, S. and F. Balazs, Quantum Computing and Communications: An Engineering Approach, John Wiley & Sons Ltd, 2005.

    27. Rieffel, E. and W. Polak, Quantum Computing: A Gentle Introduction, The MIT Press, 2011.

    28. Bulletin of the Chinese Academy of Science, Quantum communications, Vol. 30, No. 2, BCAS, 2016.

    29. Yard, J., P. Hayden, and I. Devetak, "Capacity theorems for quantum multiple-access channels: Classical-quantum and quantum-quantum capacity regions," IEEE Transactions on Information Theory, Vol. 54, No. 7, 3091-3113, July 2008.
    doi:10.1109/TIT.2008.924665