Vol. 93

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-07-05

Fast Arrays Synthesis Algorithem by the Matrix Method with Embedded Patterns of Standard Cell

By Le Xu, Yong Yang, Rui Li, and Xiao-Wei Shi
Progress In Electromagnetics Research C, Vol. 93, 237-251, 2019
doi:10.2528/PIERC19032701

Abstract

In this paper, a standard cell radiation pattern is selected to accelerate the synthesis of a large-scale arrays pattern. The radiation patterns distortion of each cell in array is transformed to the additive perturbation in the array manifold matrix of the antenna array, and the weighted total least squares method is developed to solve this matrix problem. The examples of several antenna arrays are presented to verify the method. Benefiting from the direct solution of matrix with the standard cell's radiation pattern, the method is low in computation cost and fast in speed.

Citation


Le Xu, Yong Yang, Rui Li, and Xiao-Wei Shi, "Fast Arrays Synthesis Algorithem by the Matrix Method with Embedded Patterns of Standard Cell," Progress In Electromagnetics Research C, Vol. 93, 237-251, 2019.
doi:10.2528/PIERC19032701
http://www.jpier.org/PIERC/pier.php?paper=19032701

References


    1. Dolph, C. L., "A current distribution for broadside arrays which optimizes the relationship between beam width and side lobe level," Proc. IRE, Vol. 34, 335-348, 1946.
    doi:10.1109/JRPROC.1946.225956

    2. Weeks, W. L., Antenna Engineering, Ch. 3, New York, McGraw-Hill, 1968.

    3. Miller, E. K., "Synthesizing linear-array patterns via matrix computation of element currents," Antennas and Propagation Magazine, Vol. 55, No. 5, 85-96, IEEE, 2013.
    doi:10.1109/MAP.2013.6735478

    4. Safaai-Jazi, A., "A new formulation for the design of Chebyshev arrays," IEEE Trans. Antennas Propag., Vol. 42, 439-443, 1994.
    doi:10.1109/8.280736

    5. Kaifas, T. N., "Direct radiating array design via convex aperture synthesis, parent front theory, and deterministic samplings," Antennas and Propagation Magazine, Vol. 56, No. 3, IEEE, 2014.
    doi:10.1109/MAP.2014.6867693

    6. Vaskelainen, L. I., "Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties," IEEE Trans. Antennas Propag., Vol. 45, No. 7, 1179-1185, 1997.
    doi:10.1109/8.596912

    7. Boeringer, D. W. and D. G. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag., Vol. 52, No. 3, 771-779, 2004.
    doi:10.1109/TAP.2004.825102

    8. Vaskelainen, L. I., "Constrained least-squares optimization in conformal array antenna synthesis," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 859-867, 2007.
    doi:10.1109/TAP.2007.891860

    9. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.
    doi:10.2528/PIER11011814

    10. Koh, J., et al., "Calculation of far-field radiation pattern using nonuniformly spaced antennas by a least square method," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1572-1578, 2014.
    doi:10.1109/TAP.2013.2293146

    11. Orazi, H., H. Soleimani, and R. Azadkhah, "Synthesis of linearly polarised patterns of conical arrays by the method of least square," Microwaves, Antennas & Propagation, Vol. 9, No. 2, 185-191, IET, 2015.
    doi:10.1049/iet-map.2013.0719

    12. Oraizi, H. and H. Soleimani, "Optimum pattern synthesis of non-uniform spherical arrays using the Euler rotation," Microwaves, Antennas & Propagation, Vol. 9, No. 9, 898-904, IET, 2015.
    doi:10.1049/iet-map.2014.0460

    13. Safaai-Jazi, A. and W. L. Stutzman, "A new low-sidelobe pattern synthesis technique for equally spaced linear arrays," IEEE Trans. Antennas Propag., Vol. 64, 1317-1324, 2016.
    doi:10.1109/TAP.2016.2526084

    14. Palacios, J., D. D. Donno, and J. Widmer, "Lightweight and effective sector beam pattern synthesis with uniform linear antenna arrays," IEEE Antennas and Wireless Propag. Letters, Vol. 16, 605-608, 2017.
    doi:10.1109/LAWP.2016.2594092